001     138240
005     20240711085631.0
024 7 _ |a 10.1016/j.jeurceramsoc.2013.06.021
|2 doi
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a WOS:000324901800051
|2 WOS
037 _ _ |a FZJ-2013-04420
082 _ _ |a 660
100 1 _ |a Ebert, Svenja Maria
|0 P:(DE-Juel1)140203
|b 0
|e Corresponding author
245 _ _ |a Failure mechanisms of magnesia alumina spinel abradable coatings under thermal cyclic loading
260 _ _ |a Amsterdam [u.a.]
|c 2013
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1390984526_27215
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Abradable coatings have been used in low- and high-pressure sections of jet engine compressors for more than 40 years. Today, they are also used in the high-pressure turbine of jet engines and are gaining more interest for applications in industrial gas turbines. They minimise the clearance between the rotating blade tips and the stationary liners. Aside from being abradable, the coatings have to be mechanically stable and withstand high thermo-mechanical loadings. A typical material used in engines today is yttria-stabilised zirconia (YSZ). This material advantageously combines a suitable thermal conductivity with a high thermal expansion coefficient, but shows a temperature capability limited to 1200 °C in long-term applications. Typical abradable coating thicknesses are above 1 mm. With increasing coating thickness and limited cooling efficiency leading to high surface temperatures, there is a risk of premature failure. As a result, new ceramic materials have been developed with better high-temperature capability. The present work investigates an atmospheric plasma sprayed ceramic double-layer coating system composed of 7YSZ as an intermediate layer and magnesia alumina spinel as a top layer. This double-layer system was sprayed onto disc-shaped Inconel 738 superalloy substrates, which were coated with a vacuum plasma sprayed MCrAlY bondcoat. The lifetime of the coating system was assessed via thermal gradient cycling testing with surface temperatures above 1400 °C. During cycling, the samples showed a typical failure mechanism with exfoliation of thin coating lamellae starting from the coating surface. This failure mechanism was not observed in thermal barrier or abradable coatings in the past. The failure mechanism was analysed and mismatch stress calculations were carried out.
536 _ _ |a 122 - Power Plants (POF2-122)
|0 G:(DE-HGF)POF2-122
|c POF2-122
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Mücke, Robert
|0 P:(DE-Juel1)129641
|b 1
|u fzj
700 1 _ |a Mack, Daniel Emil
|0 P:(DE-Juel1)129630
|b 2
|u fzj
700 1 _ |a Vaßen, Robert
|0 P:(DE-Juel1)129670
|b 3
700 1 _ |a Stöver, Detlev
|0 P:(DE-Juel1)129666
|b 4
|u fzj
700 1 _ |a Wobst, Tanja
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gebhard, Susanne
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1016/j.jeurceramsoc.2013.06.021
|g Vol. 33, no. 15-16, p. 3335 - 3343
|p 3335 - 3343
|n 15-16
|0 PERI:(DE-600)2013983-4
|t Journal of the European Ceramic Society
|v 33
|y 2013
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/138240/files/FZJ-2013-04420.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:138240
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129630
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129666
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-119H
|2 G:(DE-HGF)POF3-100
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-122
|2 G:(DE-HGF)POF2-100
|v Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21