
A unifying mode-coupling theory for transport properties of electrolyte solutions.

I. General scheme and limiting laws

Claudio Contreras Aburtoa) and Gerhard Nägeleb)

Institute of Complex Systems, ICS-3, Research Centre Jülich, D-52425 Jülich,

Germany

We develop a general method for calculating conduction-diffusion transport prop-

erties of strong electrolyte mixtures, including specific conductivities, steady-state

electrophoretic mobilities, and self-diffusion coefficients. The ions are described as

charged Brownian spheres, and the solvent-mediated hydrodynamic interactions (HIs)

are accounted for also in the non-instantaneous ion atmosphere relaxation effect. A

linear response expression relating long-time partial mobilities to associated dynamic

structure factors is employed in our derivation of a general mode coupling theory

(MCT) method for the conduction-diffusion properties. A simplified solution scheme

for the MCT method is discussed. Analytic results are obtained for transport coef-

ficients of pointlike ions which, for very low ion concentrations, reduce to the Deby-

Falkenhagen-Onsager-Fuoss (DFOF) limiting law expressions. As an application,

an unusual non-monotonic concentration dependence of the polyion electrophoretic

mobility in a mixture of two binary electrolytes is discussed. In addition, leading-

order extensions of the limiting law results are derived with HIs included. The present

method complements a related MCT method by the authors for the electrolyte viscos-

ity and shear relaxation function [C. Contreras-Aburto and G. Nägele, J. Phys.: Con-

dens. Matter 24, 464108 (2012)], so that a unifying scheme for conduction-diffusion

and viscoelastic properties is obtained. We present here the general framework of

the method, illustrating its versatility for conditions where fully analytic results are

obtainable. Numerical results for conduction-diffusion properties and the viscosity of

concentrated electrolytes are presented in an accompanying article labeled II.
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I. INTRODUCTION

Electrolyte solutions are of considerable importance in industrial applications involving

electrochemical processes, such as waste water treatment and ion exchange. There is thus

a need for theoretical-analytic methods, which allow to predict linear conduction-diffusion

transport properties such as ion conductivity, electrophoretic mobilities, and self- and col-

lective diffusion coefficients in non-dilute solutions. The interest in analytic methods has

been further boosted by the increasing amount of research made on suspensions of charge-

stabilized colloidal particles, and charged protein solutions1. As a matter of fact, the trans-

port of small microions in an electrolyte solution, and of large charged colloidal particles

suspended in an electrolyte solution, are strongly inter-related research areas in colloid sci-

ence and physical chemistry.

The theoretical description of the ion dynamics in electrolytes is demanding and far

from being complete, owing to the long-range nature both of the Coulomb interactions,

and the inter-ion hydrodynamic interactions (HIs) mediated by the intervening solvent.

The interplay of these interactions gives rise to unusual features in the ionic transport

coefficients. In addition to these generic interactions, which can be treated theoretically

using a continuum model for the solvent, ion specific interactions may play a role, which has

been addressed using concepts such as ion hydration and solvent polarization2,3.

The electrolytes considered in this work are strong electrolyte solutions where the salt

solute is fully dissociated. At concentrations less than about 0.01 M, the electrolyte ions (mi-

croions) can be treated as pointlike, and their Coulomb interactions give rise to the peculiar

square-root in concentration dependence of the electrolyte transport properties. This con-

centration dependence is the hallmark of the celebrated Debye-Falkenhagen-Onsager-Fuoss

(DFOF) limiting law expressions for the transport coefficients characterizing electrolyte con-

ductivity and electrophoresis4,5, self-diffusion6, and viscosity4,5,7. The limiting law expres-

sions have been derived using a continuum model for the solvent, with the ions treated as

pointlike Brownian particles whose equilibrium pair correlations are described by the linear

Debye-Hückel (DH) theory.

The ion transport in electrolyte solutions is influenced by two major mechanisms which

tend to slow the diffusive-convective motion of the ions. The first one is the relaxation effect,

which describes the relaxation of the ion atmosphere around each ion as a non-instantaneous
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response to any perturbation of the spherical cloud symmetry. The ion cloud perturbation

is counteracted by the electrostatic interactions, which tend to restore local electroneutrality

and by the Brownian motion of the ions. Additionally to the electro-steric interactions, the

cloud relaxation is influenced by the HIs, since ions in motion drag the surrounding solvent

along.

The second mechanism is the electrophoretic effect which is of hydrodynamic origin and

becomes operative when an electric field is applied (electrophoresis). It describes the slowing

influence on ion migration due to the instantaneous hydrodynamic coupling of the ionic

motions.

Statistical mechanical transport theories of electrolyte mixtures are commonly based on

the multicomponent primitive model (PM), where the (hydrated) electrolyte ions are treated

as uniformly charged spheres interacting by Coulomb forces. The spheres are embedded in a

structureless Newtonian fluid characterized by the shear viscosity, η0, and the static dielectric

constant ε. No dielectric mismatch effects between spheres and solvent are considered in

this model. A PM system is overall electroneutral, and in equilibrium certain moment

conditions must be fulfilled by its static pair distribution functions. Most notable here is

the local electroneutrality condition, commanding each ion to be surrounded by a cloud of

ions bearing a net equal and opposite charge8,9.

In most theoretical approaches, the Brownian dynamics of the ions is taken to be over-

damped, with the configurational distribution function described by the many-particle gen-

eralized Smoluchowski equation (GSE) in combination with the stationary Stokes equation

of low-Reynolds number solvent flow. We refer to this overdamped dynamics, for short, as

the Smoluchowski dynamics.

The PM-based Smoluchowski dynamics has been applied, incidentally, also to dispersions

of globular charged colloids and proteins, by treating them as large and slowly diffusing

polyions1. This application has allowed for the exploration of electrokinetic phenomena on

the colloid level, including the study of the electrolyte friction effect (i.e., the self-correlation

part of the relaxation effect) on colloidal self-diffusion in dilute10,11 and concentrated12,13 sus-

pensions. When the electrophoresis of colloidal polyions in a high-dielectric constant fluid

such as water is considered, one needs to account for the effect of the (colloid configuration-

dependent) induced polarization electric field generated by the low-dielectric colloidal par-

ticles. This field influences the microion migrations in addition to the applied electric field.
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The microion cloud relaxation effect is negligible in an ultrathin double layer. Thus, when

the double layer around a colloidal particle is very thin, the decrease in the colloidal elec-

trophoretic mobility is entirely due to the electrophoretic effect, i.e. to the electro-osmotic

cross-streaming of counterions plus dragged along fluid relative to the surface of the colloidal

particle.

Various routes have been followed in the past to develop theoretical methods suitable for

calculating conduction-diffusion transport properties for electrolyte concentrations surpass-

ing the limiting law regime, where the excluded volume of the ions needs to be considered.

We mention here, in particular, the work by Falkenhagen3 and Ebeling et al .14,15 where

the DFOF continuity equations approach has been extended to finite ion sizes. The relax-

ation effect contribution to the conductivity is deduced in their approach from averaging the

electrostatic force experienced by a central ion using the perturbed ionic pair distribution

functions.

Considerable progress along this line of research has been made in the works of Bernard,

Turq, Blum, Dufreche and collaborators. In a series of papers16–20, these researchers ex-

tended the DFOF approach to finite ion sizes by using mostly the analytic mean-spherical

approximation (MSA) expressions for the ion-ion equilibrium pair correlation functions.

They obtained results, in particular, for the steady-state ion conductivity16,18,20, the ion

self-diffusion coefficients21, and the mutual (chemical) diffusion coefficient22,23 (on this sub-

ject, refer also to Felderhof24,25). However, to our knowledge the contribution of the HIs to

the relaxation effect has not been included in these works, except for the special case of self-

diffusion26. Chandra, Bagchi and collaborators have combined mode-coupling theory (MCT)

and dynamic density functional theory (DDFT) arguments to obtain expressions for the ionic

conductivity19,27,28 and the electrolyte viscosity29 of electrolyte solutions. The excluded vol-

umes of the ions are incorporated in their hybrid method using Attard’s generalization8 of

the Debye-Hückel (DH) pair distribution functions. The effect of the ion-ion HIs on the re-

laxation effect part of the conductivity, and on the viscosity have been disregarded in their

treatment. In related work, Dufreche et al.26 have combined MCT and DDFT arguments

with Kirkwood’s friction formula for electrolyte friction to calculate the ion self-diffusion

coefficients, and velocity autocorrelation functions, in a binary electrolyte solution. The fi-

nite ion sizes in this approach to self-diffusion are accounted for in a MSA, and the inter-ion

HIs are treated on the point-particle (Oseen) level of description. In those works26, the ef-
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fect of (hydro-) dynamic cross correlations in the intermediate scattering functions has been

disregarded.

In the present paper, we present a versatile multicomponent MCT scheme which allows

for the calculation of conduction-diffusion linear transport properties of strong electrolyte

mixtures within a unifying framework. Our MCT scheme is based on the Smoluchowski

dynamics applied to the PM. The influence of the ion-ion HIs is accounted for both in the

(short-time) electrophoretic and relaxation effect contributions. We derive MCT expressions

for the steady-state molar conductivity and the ion electrophoretic mobilities in an external

field, and for the long-time ionic self-diffusion coefficients. The present scheme for calculat-

ing linear conduction-diffusion properties complements recent work by the present authors

where a related MCT theory with HIs has been developed for the shear viscosity, and the

linear shear-stress correlation function of electrolyte mixtures30. The MCT expressions for

conduction-diffusion properties derived here are based on a linear response relation between

long-time partial ion mobilities and associated equilibrium dynamic structure factors, and

on the fact that conduction-diffusion transport properties are expressible as linear combina-

tions of the long-time partial mobilities. In addition, we build on earlier work by Nägele and

collaborators where a general MCT for the dynamic structure factor of Brownian particle

mixtures with HIs has been developed31–33.

The ion-ion HIs are accounted for on the Rotne-Prager (RP) far-field level of description,

both in the electrophoretic and relaxation effects. This is a fair approximation of the HIs

for moderately concentrated electrolytes. It allows for an analytic treatment, and most

importantly, it preserves the positive definiteness of the exact matrix of diffusivity tensors.

The only input required in the MCT scheme are the equilibrium pair correlation functions.

We refer to the multicomponent MCT method presented here for short as the MCT-HIs

scheme.

The objective of this paper (referred to as I) is to provide a self-contained description of

the general framework of the MCT-HIs method, serving as the basis for later applications

and further developments, and to illustrate its versatility for conditions (low ion concentra-

tions) where fully analytic expression for the diffusion-conduction transport properties are

obtained. To this end, the ions are treated as pointlike, and the analytic DH pair distri-

bution functions are used as the static input. We show that the DFOF limiting laws are

correctly, and straightforwardly, recovered from the MCT scheme when specialized to the
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low-concentration regime. We demonstrate this for mixtures of ions with equal individual

diffusion coefficients, binary electrolytes, and for the significantly more complex situation

of a four-component electrolyte system including a polyion component which, as we are

going to show, reveals an unusual non-monotonic concentration dependence of the polyion

electrophoretic mobility. In going beyond the limiting law regime, we derive analytic MCT-

HIs expressions for leading-order HIs contributions to the relaxation parts of the transport

coefficients.

At larger electrolyte concentration where HIs become significantly strong, also the finite

ion sizes must be considered. We therefore give the essentials of a simplified MCT-HIs so-

lution scheme applicable to intermediately concentrated solutions, which accounts both for

the excluded volumes of the ions and their HIs. In a closely related forthcoming article

by the present authors of same title (labeled II), the simplified MCT-HIs is used to derive

semi-analytic expressions for the conduction-diffusion transport coefficients in moderately

concentrated electrolyte solutions. Moreover, the concentration dependence of these expres-

sions is investigated in comparison with experimental data, and against the MCT-DDFT

method of Chandra and Bagchi.

The paper is organized as follows: Sec. II summarizes the considered conduction-diffusion

transport properties, and relates them to specific combinations of the long-time partial

mobilities. Using linear response theory, in Sec. III the partial mobilities are expressed

in the form of a Green-Kubo (GK) relation. The GK relation is used subsequently in

Sec. IVA to derive a useful relation between the partial mobilities and associated partial

dynamic structure factors, with the latter being evaluated using a multicomponent MCT.

The essentials of the MCT-HIs scheme are given in Sec. IVB. A simplified solution method

is discussed in Sec. IVC. In Sec. V, analytic MCT-HIs results for the transport properties

of point-ion solutions are presented, and leading-order HIs contributions are discussed. Sec.

VI contains a summary and outlook.

II. PARTIAL MOBILITIES AND CONDUCTION-DIFFUSION

PROPERTIES

We describe strong electrolyte mixtures on the PM level, including the HIs between the

ions. The hydrated electrolyte ions of components α = 1, · · · ,m, partial numbers Nα and
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partial number densities nα = Nα/V (where V is here the macroscopic system volume) are

treated as uniformly charged hard spheres interacting statically by Coulomb forces. The

solvent is modeled as a structureless dielectric continuum and as an incompressible New-

tonian fluid, characterized statically by the Bjerrum length LB = e2/(εkBT ) (in Gaussian

units) with the static dielectric constant ε at solvent temperature T and the proton elemen-

tary charge e, and dynamically by the shear viscosity η0. The dynamics of the electrolyte

ions (microions) is taken to be overdamped, governed by the many-component generalized

Smoluchowski equation. The ions of component α are characterized by their excluded vol-

ume radius aα, charge zαe, and single-ion translational diffusion coefficient D0
α.

Consider now an m-component, homogeneous dispersion of spherical Brownian particles

at constant solvent chemical potential and temperature. The dispersion is assumed to be

weakly perturbed away from its isotropic, fluid-like equilibrium state by the application of a

constant force field {Fα = Fαq̂}, acting at the centers of particles of the same component α.

After a short transition period, the particles acquire steady-state mean velocities, 〈Vα 〉st,

collinear with the unit vector q̂. The mean velocities are linearly related to the external

forces according to

nα 〈Vα 〉st =
m∑
γ=1

(nαnγ)
1/2 µLαγFγ . (1)

The configurational average, 〈· · · 〉st, is taken using the linearly perturbed, stationary con-

figurational distribution function (see later).

It is important to note that the mean velocities are considered in the reference frame

where the mean volume flow velocity of particles plus fluid is zero, i.e. where the suspension

as a whole is overall at rest24,34–36. This is related to the fact that during the electrophoresis

or sedimentation of particles in a spatially homogeneous, macroscopic system, where on

average the particles drift collinear to the constant force field, volume conservation (i.e.

incompressibility) of fluid and particles, and the long-range nature of the HIs, give rise

to a uniform mean fluid backflow opposing the mean volume flow of the particles. The

backflow is most pronounced in the case of sedimentation, where all particles drift in the

same direction along the gravitational field. The sedimentation backflow is driven by a

macroscopic pressure gradient originating from the buoyancy-corrected force transmitted

to the fluid by the settling particles. In an electrophoresis experiment, where all ions are

subject to a constant electric field of strength E, so that Fγ = zγeE, there is no macroscopic
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pressure gradient, since due to total charge neutrality,

m∑
γ=1

nγzγ = 0 , (2)

the total force transmitted to the fluid by the ions is zero. However, there is still a non-

zero macroscopic backflow, except for highly symmetric situations such as for a symmetric

binary electrolyte. As discussed in detail, e.g. by Batchelor and others36–40, in spite of the

long-range nature of the HIs, unambiguous finite values for the steady-state sedimentation

and other mobility coefficients characteristic of a homogeneous suspension are obtained,

provided the calculations (involving configurational averaging and the thermodynamic limit)

are performed in the zero average suspension volume velocity reference frame.

The kinetic coefficients, µLαβ, are intrinsic properties of the system and are referred to as

the long-time partial mobilities. Their scalar nature reflects the isotropy of the unperturbed

system. The µLαγ constitute the elements of a symmetric and positive definitem×m mobility

matrix µL. This matrix is the central quantity dealt with in this work, since the transport

coefficients characterizing conduction-diffusion processes can be expressed in terms of its

elements. The partial mobilities are directly related to the symmetric Onsager coefficients

of irreversible thermodynamics, Lαβ = (nαnγ)
1/2 µLαγ, likewise defined with respect to the

average suspension volume velocity rest frame24.

Consider now an electrophoresis experiment on a strong electrolyte solution in a constant,

weak electric field E, where

〈Vα 〉st = µelα E (3)

is the steady-state mean electrophoretic drift velocity of α-type ions in the zero average

suspension velocity frame. The steady-state electrophoretic mobility of α-type ions,

µelα =
m∑
γ=1

(
nγ
nα

)1/2

zγ eµ
L
αγ , (4)

is a linear combination of partial mobility coefficients. Note that its physical dimension

differs from that of the kinetic mobility coefficients µLαγ.

The steady-state average electric current density in the solution is related to the applied

electric field by Ohm’s law,

〈
jel
〉
st

=
m∑
α=1

nαzαe 〈Vα 〉st = σE , (5)
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where the so-called specific conductivity of the electrolyte solution,

σ =
m∑

α,γ=1

(nαnγ)
1/2 zαzγe

2µLαγ , (6)

is likewise given by a linear combination of partial long-time mobilities.

The partial ionic molar conductivity of an ion component α, i.e. the specific conductivity

contribution of this species divided by its molar concentration cα = nα/NA, is given by41

λelα = zα µ
el
α F , (7)

where F = NAe is Faraday’s constant, and NA is Avogadro’s number. The electrophoretic

mobilities are essentially ionic molar conductivities.

The ability of a solution to conduct an electric current is commonly quantified in terms

of the molar conductivity, Λ, instead of the specific conductivity. The molar conductivity of

an m-component electrolyte solution is defined as the specific conductivity divided by the

molar concentration, c∗, of electrolyte solute units which, for a strong electrolyte solution,

are completely dissociated into the m ion components with partial molar concentrations cα.

With Λ = σ/c∗, it follows

Λ =
m∑
α=1

ναλ
el
α = F

m∑
α=1

να zα µ
el
α , (8)

where the positive integers {να = cα/c
∗} are the stoichiometric coefficients of the various ion

components. A vast range of data for the molar conductivity of various electrolyte solutions

has been compiled in the literature2,42.

The electrophoretic mobility of an isolated α -type ion at infinite dilution is

µel,0α =
zαe

kBT
D0
α , (9)

and the associated mean electrophoretic velocity is given by

V(0)
α = µel,0α E . (10)

For strong electrolyte solutions, the total molar electrolyte ion concentration, c, is equal to

the total number density,

nT =
m∑
α=1

nα , (11)
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of dissociated ions expressed in mol per litre, i.e. c = nT/NA = c∗
∑

α να.

The long-time self-diffusion coefficient, DL
α , of a Brownian particle i ∈ α is determined in

linear response by10

〈Vα
i 〉st = βDL

α Fα
i . (12)

Different from electrophoresis, in self-diffusion one considers the situation where only a single

particle i ∈ α is subjected to a constant weak force Fα
i . Consequently, the self-diffusion

coefficients can be expressed as

DL
α = kBT

(
µLαα
)self

, (13)

where

µLαβ = δαβ
(
µLαα
)self

+
(
µLαβ
)cross

. (14)

The long-time mobility self part,
(
µLαα
)self , is due to self-correlations (in the velocity) of

the singled-out particle i. Cross correlations with other ions are contained in the second

mobility part. The self-part mobility contribution is obtained from mentally singling out a

few α-type particles to form a fictitious additional component α∗ = m+ 1, taking then the

limit nα∗ → 0 of µLα∗α∗ while keeping all the other m partial concentrations fixed.

Accordingly, the electrophoretic mobility of α-type ions can be re-expressed as

µelα =
zαe

kBT
DL
α +

m∑
γ=1

(
nγ
nα

)1/2

zγ e
(
µLαγ
)cross

, (15)

or equivalently as

µelα = µel,0α

DL
α

D0
+
(
µelα
)
cross , (16)

where the definition in Eq. (9) of the single-ion electrophoretic mobility has been used.

If dynamic cross correlations of ions are completely neglected, the following approximate

Nernst-Einstein (NE) relations are obtained,

µelα ≈
zαe

kBT
DL
α (17)

and

σ ≈
m∑
γ=1

nαz
2
αe

2 D
L
α

kBT
, (18)

which express the collective properties µelα and σ in terms of long-time self-diffusion coef-

ficients. The MCT-HIs approach developed in this paper allows for scrutinizing the ap-

plicability of these simplifying NE relations. A general discussion on the validity of NE
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relations, and so-called generalized Stokes-Einstein relations between conduction-diffusion

and rheological properties, will be given in a separate communication.

We point out that diffusion transport coefficients not considered in the present paper,

such as the interdiffusion33,43,44 and chemical ion diffusion coefficients22,24,25,45 characterizing

diffusional relaxation of weak concentration gradients, and the partial mean sedimentation

velocities of slowly settling particles37,38, can be also expressed in terms of the µLαγ. The

application of the present MCT scheme to the chemical diffusion of electrolytes will be the

topic of a separate article.

III. LINEAR TRANSPORT IN SMOLUCHOWSKI DYNAMICS

We derive here a GK relation for the long-time mobility matrix, using linear response

theory in the framework of the Smoluchowski dynamics10,36,46,47. The GK relation will be

subsequently linked to the time derivative of the matrix of partial dynamic structure factors

of the unperturbed system. To evaluate this matrix, the many-component MCT scheme will

be used.

To this end, consider an m-component dispersion of overall N =
∑m

γ=1Nγ spherical

Brownian particles in an incompressible Newtonian fluid. The particle Reynolds number,

and the convection Péclet number quantifying the relative strength of external to Brownian

forces, are both assumed to be small. Inertial effects are then negligible, with the fluid motion

governed by the Stokes equation, and linear response theory can be applied. The particles

are assumed to be confined to a finite volume V by some sort of (electrically neutral) wall-

like potential. The thermodynamic limit, N → ∞ and V → ∞, with all nα kept constant,

is taken finally so that the influence of the confining potential becomes negligible.

In the absence of the external forces, the system is assumed to be in thermodynamic

equilibrium, and the configurational probability density function given by

Peq(R
N) = exp

{
−βU

(
RN
)}
/Z . (19)

Here, Z =
´
dRN exp

{
−βU(RN)

}
, RN = (R1, · · · ,RN) is the set of position vectors of

the particle centers, dRN = (dR1, · · · , dRN) is the 3N -dimensional volume element, and

U(RN) is the total N -particle potential energy due to the solvent-averaged direct particle

interactions and the wall-like potential. In the PM used in this work, the pair interactions are
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Coulomb plus excluded volume interactions. Equilibrium averages with respect to Peq(RN)

are denoted by 〈· · · 〉eq.

We assume that starting at time t = 0, the particles are exposed to a stationary and

spatially periodic external potential48,49

Φq(RN) = − 1

iq

N∑
l=1

Fl exp {iq ·Rl} , (20)

implying that each particle l ∈ {1, · · · , N} is subjected to a spatially periodic, time-

independent force,

Fl(Rl) = −∇lΦq(RN)= q̂Fl exp {iq ·Rl} (21)

acting at its center and being aligned with the vector q = q q̂ of magnitude q. The q-

dependent exponential phase factor has been introduced here to serve two purposes: First,

to obtain unambiguous expressions for the ionic conduction-diffusion transport coefficients

in presence of long-range HIs, and second, to make contact with the Mori-Zwanzig memory

function formalism for dynamic structure factors (partially) accessible in scattering exper-

iments. The steady-state electrophoresis of ions under a constant electric field E = E q̂ is

recovered from taking successively the limits q → 0 and t→∞. These limits are performed

once the thermodynamic limit has been taken.

The probability density function P (RN , t), describing the configurational evolution at

times t > 0 in presence of the external field, is the solution of the GSE

∂

∂t
P (RN , t) = −

N∑
l=1

∇l ·
(
VlP (RN , t)

)
(22)

with initial condition P (RN , t = 0) = Peq(R
N). Here,

Vl(R
N , t) =

N∑
p=1

Dlp(R
N) ·

[
−β∇pU(RN)−∇p lnP (RN , t)− β∇pΦq(RN)

]
(23)

is the configuration-dependent microscopic velocity of a particle l. We have introduced

here the translational hydrodynamic diffusivity tensors, Dlp

(
RN
)
, of spheres in an infinite

Newtonian fluid. The tensors linearly relate the hydrodynamic force on particle p at position

Rp to the resulting velocity change of particle l at position Rl. They can be obtained, in

principle, from solving the Stokes equation with hydrodynamic boundary conditions specified

on the particle surfaces.
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To linear order in the external forces, the probability density function for t ≥ 0 is given

formally by

P (RN , t) = Peq(R
N)

[
1 + β

ˆ t

0

dueÔ
(un)
B (RN )(t−u) Ô

(un)
B (RN)Φq(RN)

]
= Peq(R

N)+δP (RN , t) ,

(24)

where δP (RN , t = 0) = 0 for the initial value of the perturbation part. We have introduced

here the time-independent backward Smoluchowski differential operator50,51,

Ô
(un)
B

(
RN
)

=
N∑

i,j=1

[
∇i − β∇iU

(
RN
)]
·Dij

(
RN
)
· ∇j , (25)

of the spatially isotropic unperturbed system. The operator exp
{
Ô

(un)
B (RN) t

}
acts as the

unperturbed time evolution operator for an arbitrary configuration space variable A(RN)

during the time span t.

We introduce next the microscopic longitudinal single-particle current, jq,l, of the unper-

turbed system by

jq,l(R
N) =

1

iq
Ô

(un)
B exp {iq ·Rl} =

[
q̂ ·VD ,(un)

l (RN) + iq q̂ ·Dll(R
N ) · q̂

]
exp {iq ·Rl} ,

(26)

where

V
D ,(un)
l (RN) = Ô

(un)
B Rl =

N∑
p=1

[
−βDlp(R

N) · ∇pU(RN) +∇p ·Dlp(R
N)
]

(27)

is the microscopic drift velocity of particle l in the absence of the external force field. The

second contribution to V
D ,(un)
l , invoking the divergence of the diffusivity tensor, is of purely

hydrodynamic origin and plays a role at higher concentrations. Note here that jq,l = q̂ ·

V
D ,(un)
l +O(q), so that

Ô
(un)
B Φq = −

N∑
p=1

jq,pFp = −
N∑
p=1

q̂ ·VD ,(un)
p Fp +O(q) . (28)

From inserting the linear response probability density function into Eq. (23), and ex-

panding the resulting equation to first order in the external force field, we obtain
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Vl(R
N , t) = β

N∑
p=1

Dlp(R
N) · Fp(Rp)−

N∑
p=1

Dlp(R
N) · ∇p

(
δP (RN , t)

Peq(RN)

)
. (29)

The unperturbed part of Vl is zero, as expected.

To make contact with Eq. (1), we evaluate the non-equilibrium average,〈
q̂ ·Vl exp {−iq ·Rl}

〉
neq

(t) =

ˆ
dRNP (RN , t) q̂ ·Vl(R

N , t) exp {−iq ·Rl}

=

ˆ
dRNPeq(R

N) q̂ ·Vl(R
N , t) exp {−iq ·Rl} , (30)

of the q-th Fourier component of the microscopic velocity in the linearly perturbed system.

Substitution of Eq. (29) into Eq. (30), followed by partial integration of the time-dependent

term using δP = 0 = Peq for Rp posited outside V , leads together with Eq. (26) to

〈
q̂ ·Vl exp {−iq ·Rl}

〉
neq

(t) = β
N∑
p=1

〈
q̂ ·Dlp(R

N) · q̂ exp {iq · [Rp −Rl]}
〉
eq
Fp

+

ˆ
dRNδP (RN , t)j−q,l(R

N) . (31)

By inserting δP according to Eqs. (24) and (28) into this equation, the average longitu-

dinal velocity of a particle l given by

〈
q̂ ·Vl exp {−iq ·Rl}

〉
neq

(t) = β
N∑
p=1

{〈
q̂ ·Dlp · q̂ exp {iq · [Rp −Rl]}

〉
eq

−
ˆ t

0

du
〈
j−q,l

(
eÔ

(un)
B (t−u) jq,p

)〉
eq

}
Fp , (32)

is expressed in terms of equilibrium averages. The first velocity contribution on the right-

hand side of Eq. (32) is the instantaneous linear response to the external forces. The second,

so-called relaxation term, describes the retarded velocity response to the external forces. It

invokes the equilibrium longitudinal current time correlation function, and the backward

Smoluchowski differential operator, Ô(un)
B

(
RN
)
, of the unperturbed system. The form of

the backward operator in the explicit notation for a mixture is given below.

For convenience, in Eqs. (19) -(32) we have used the most general notation where all N

ions are allowed to be different from each other. We return now to the explicit notation for

mixtures by considering an m-component mixture where equal external forces are acting on
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particles of the same component. In addition, we specialize Eq. (32) to the long-time limit

where the system has reached a steady-state described by Pst(RN) = P (RN , t → ∞), and

we take the thermodynamic limit followed by the constant force field limit q → 0. Owing

to the long-range nature of the HIs, proper performance of the small-q limit is crucial to

guarantee convergence of the equilibrium averages on the right-hand side of Eq. (32). This

amounts to account properly for the solvent back-flow contribution in electrophoresis or

sedimentation. The ensuing result gained from taking the consecutive limits is of the form

given in Eq. (1), but now a microscopic expression for the long-time mobility matrix, µL,

is obtained. The derivation of this expression is described in the following.

The partial mobilities consist of a short-time part (labeled by the superscript S), and a

relaxation or memory part ∆µαβ. Explicitly,

µLαβ = µSαβ + ∆µαβ , (33)

with the short-time mobility part given by

kBTµ
S
αβ = lim

q→0
Hαβ (q) . (34)

Here51,

Hαβ (q) = δαβD
S
α +Hd

αβ (q) (35)

are the partial hydrodynamic functions, where

DS
α = lim

∞

〈
q̂ ·Dαα

11

(
RN
)
· q̂
〉
eq

(36)

is the short-time self-diffusion coefficient of an α-component particle, and

Hd
αβ (q) = (nαnβ)1/2 lim

∞
V
〈
q̂ ·Dαβ

12

(
RN
)
· q̂eiq·(R

α
1−R

β
2)
〉
eq

(37)

are the wavenumber-dependent distinct parts of Hαβ (q). According to Eq. (32), the physical

meaning of the Hαβ(q) is that of short-time partial sedimentation coefficient generalized to

a sinusoidally varying force field of wavenumber q (refer also to Ladd and others48,49). The

partial diffusivity tensor, Dαβ
ij

(
RN
)
, relates the hydrodynamic force on a spherical particle

j ∈ β at position Rβ
j to the velocity change of a particle i ∈ α at position Rα

i . The limit

symbol lim∞ in Eqs. (36) and (37) abbreviates the thermodynamic limit, V → ∞, where

all partial number concentrations, nγ, are kept constant.
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As genuine equilibrium averages of hydrodynamic diffusivity tensors, the µSαβ and the

associated short-time electrophoretic mobility of α-type ions (see Eq. (4)),

µel,Sα = lim
q→0

m∑
γ=1

(
nγ
nα

)1/2
zγ e

kBT
Hαγ(q) , (38)

are rather straightforwardly calculated using the PM equilibrium pair distribution functions

as input, for moderately concentrated systems where two-body HIs contributions prevail.

The short-time electrophoretic mobility µel,Sα is the sum,

µel,Sα = µel,0α + ∆µel,Sα , (39)

of the single-ion mobility part, µel,0α , given in Eq. (9), and the electrophoretic mobility

correction, ∆µel,Sα , arising from the HIs. The latter accounts for the slowing effect on the

electric field-induced ion migration owing to the instantaneous hydrodynamic coupling of

the ion motions. This coupling is particularly pronounced between cations and anions which

migrate, on average, in opposite directions. According to Eq. (33),

µLαβ = µ0
αβ + ∆µSαβ + ∆µαβ , (40)

µelα = µel,0α + ∆µel,Sα + ∆µelα (41)

and a similar decomposition into ideal (i.e., interaction-free), short-time and relaxation parts

applies for the other linear conduction-diffusion transport coefficients. The relaxation part

of the electrophoretic mobility of α-type ions is

∆µelα =
m∑
γ=1

(
nγ
nα

)1/2

zγ e∆µαγ . (42)

In accordance with Eq. (14), the non-ideal mobility parts are the respective sum of self- and

cross-correlation contributions,

∆µSαβ = δαβ
(
∆µSαα

)self
+
(
∆µSαβ

)cross
, (43)

∆µαβ = δαβ (∆µαα)self + (∆µαβ)cross . (44)

Similar decompositions hold sway also for other conduction-diffusion transport coefficients,

since these are all expressible as linear combinations of the µLαβ. In the simplifying

Rotne-Prager (RP) approximation of the HIs introduced further down, the short-time
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self-correlation contribution to the mobility coefficients vanishes. The only short-time con-

tribution arises then from the electrophoretic effect. This is a cross-correlation contribution

quantified by the zero-q limit ofHd(q). Explicit expressions for the self- and cross-correlation

contributions to ∆µαβ and µLαβ are derived further down.

The calculation of the relaxation mobility contributions, ∆µαβ, to the electric conductiv-

ity and long-time electrophoretic mobilities is considerably more difficult, for these relate to

the relaxation of perturbed ion atmospheres under the action of electro-steric and hydrody-

namic forces. Using Eq. (32), the relaxation mobilities can be expressed in form of a GK

relation involving the time integral of a longitudinal current time correlation function, i.e.

kBT (nαnβ)1/24µαβ = − lim
ε→0+

lim
q→0

lim
∞

1

V

ˆ ∞
0

dte−εt
〈
jβ−q

(
eÔ

(un)
B t jαq

)〉
eq
. (45)

Here, jαq is the q-th Fourier component of the microscopic longitudinal current density of

α-type particles,

jαq =
1

iq
Ô

(un)
B

Nα∑
l=1

exp {iq ·Rα
l } = q̂ ·

Nα∑
l=1

Vα,D
l +O (q) , (46)

where Vα,D
l = Ô

(un)
B Rα

l is the unperturbed microscopic drift velocity of an α-type particle,

and ε is a positive infinitesimal (not to be confused with the solvent dielectric constant),

introduced to guarantee convergence of the time integral52. The backward Smoluchowski

operator of the unperturbed ion mixture follows from Eq. (25) as50

Ô
(un)
B

(
RN
)

=
m∑

α,β=1

Nα,Nβ∑
i,j=1

[
∇α
i − β∇α

i U
(
RN
)]
·Dαβ

i j

(
RN
)
· ∇β

j . (47)

Introducing the microscopic longitudinal electric current density of α-type ions,

jα,elq = zαe j
α
q , (48)

and the total longitudinal electric current density,

jelq =
m∑
γ=1

zγ ej
γ
q , (49)

a GK relation for the relaxation part of the specific conductivity is obtained which reads

explicitly

kBT4σ = − lim
1

V

ˆ ∞
0

dt e−η t
〈
jel−q

(
eÔ

(un)
B t jelq

)〉
eq

. (50)
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Likewise,

kBT nαzαe
24µelα = − lim

1

V

ˆ ∞
0

dt e−η t
〈
jel−q

(
eÔ

(un)
B t jα,elq

)〉
eq

, (51)

is the GK relation for the relaxation part of the electrophoretic mobility. The unspecified

limit symbol appearing in the above expressions is an abbreviation for the three consecutive

limits in Eq. (45).

Owing the longitudinal projection matrix, q̂q̂, which appears explicitly in Hαγ(q), and

implicitly in the GK relations through the longitudinal current jαq = q̂ · jαq, any Fourier-

transformed divergence-free flux vector can be subtracted from jαq and its short-time coun-

terpart, without changing the values of the two transport coefficients. In particular, the

q-th Fourier component of the incompressible local mean volume flow velocity53,54 can be

subtracted, implying that Eqs. (38) and (51) are the short-time and relaxation parts, respec-

tively, of the electrophoretic mobility of α-type ions as measured in the zero mean volume

velocity reference frame.

IV. MODE COUPLING THEORY OF PARTIAL MOBILITIES

A. Relation between partial mobilities and dynamic scattering functions

GK relations are very useful in computer simulation calculations55–61. However, to obtain

analytically tractable expressions for ∆µLαγ, it is advantageous to relate the mobility matrix

to the symmetric m×m matrix, F (q, t), of partial dynamic structure factors,

Fαβ (q, t) = lim
∞

〈
cα−q

(
eÔ

(un)
B t cβq

)〉
eq
, (52)

of the unperturbed system, where

cαq =
1√
Nα

Nα∑
l=1

exp {iq ·Rα
l } −

√
Nα δq,0 (53)

is, up to the factor of 1/
√
Nα, the q-th Fourier component of microscopic density fluctuations

of α-type particles. Specific linear combinations of partial dynamic structure factors are

accessible in dynamic scattering experiments, where q plays the role of the scattering wave

vector. For clarity, we use the notation Sαβ(q) = Fαβ(q, t = 0) for the initial values, which are

referred to as the equilibrium partial static structure factors. The factor 1/
√
Nα is included
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in the definition of cαq to render F (q, t) intensive, and to obtain composition-independent

large-q asymptotic initial values Sαβ(q →∞) = δαβ.

To relate µLαβ to Fαβ (q, t), we start from

∂2

∂ t2
Fαβ (q, t) = lim

∞

〈(
Ô

(un)
B cα−q

)
eÔ

(un)
B t

(
Ô

(un)
B cβq

)〉
eq

=
q2

(nαnβ)1/2
lim
∞

1

V

〈
jα−q

(
eÔ

(un)
B t jβq

)〉
eq
, (54)

where the second equality follows from Ô
(un)
B cαq = iq jαq/

√
Nα. On realizing that the partial

hydrodynamic functions are given by

lim
∞

〈
cα−q

(
Ô

(un)
B cβq

)〉
eq

= −q2Hαβ(q) , (55)

time integration of Eq. (54) results in

∂

∂ t
Fαβ (q, t) = −q2Hαβ(q) + q2 (nαnβ)−1/2 lim

∞

1

V

ˆ t

0

du
〈
jα−q

(
eÔ

(un)
B u jβq

)〉
eq

, (56)

which relates the rate of change of F(q, t) to the longitudinal current autocorrelation function

matrix. Comparison with the GK relations in Eqs. (32) and (45) shows that

kBT µL = − lim
t→∞

lim
q→0

1

q2
∂

∂ t
F (q, t) . (57)

The relation in Eq. (57) between the searched for mobility matrix and the time derivative

of the equilibrium dynamic structure factor matrix is very useful, since the right-hand side

of Eq. (57) can be obtained using well-developed solution schemes, such as MCT.

The conductivity and ion electrophoretic mobilities can be expressed in terms of global

dynamic structure factors,

FZZ(q, t) =
m∑

αβ=1

(xαxβ)1/2 zαzβFαβ(q, t) = z2 Tr [P · F(q, t)]

FNN(q, t) =
m∑

αβ=1

(xαxβ)1/2 Fαβ(q, t) = Tr [Pn · F(q, t)]

FNZ(q, t) =
m∑

αβ=1

(xαxβ)1/2 zβFαβ(q, t) , (58)

describing correlations in the microscopic fluctuations of the total charge-density (Z) and

the total number density (N) around their mean values zero and nT , respectively. Here,
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Tr denotes the trace operation. Using Eq. (57) in conjunction with Eqs. (4) and (6), one

obtains

kBT σ = −nT e2 lim
t→∞

lim
q→0

1

q2
∂

∂t
FZZ (q, t) , (59)

kBT
m∑
α=1

xαµ
el
α = − lim

t→∞
lim
q→0

1

q2
∂

∂t
FNZ (q, t) , (60)

where xα = nα/nT is the molar fraction of α-type ions. The matrix P with elements

Pαβ =
(xαxβ)1/2 zαzβ

z2
(61)

is the projector (i.e. P ·P = P) on the charge-density fluctuations subspace spanned by the

m-dimensional vector u of elements
{
x
1/2
α zα

}
. Here,

zp =
m∑
γ=1

xγ z
p
γ (62)

is the p-th moment of the ion valency distribution (with p = 1, 2, · · · ), which for purely

monovalent ions is equal to one for p even and zero for p odd. The Debye screening length,

1/κ, characterizing the range of electrostatic ion correlations, is related to the second moment

by

κ2=4πLBnT z2 . (63)

The matrix, Pn, of components (xαxβ)1/2 is the projector on the subspace of total number

density fluctuations.

B. General MCT scheme

While a more simple one-component version of MCT can be directly applied to FZZ(q, t)

to obtain the conductivity, it is advantageous and more general to stick to the multicompo-

nent description, by treating the partial dynamic structure factors individually on basis of

the exact matrix memory equation33,

∂

∂t
F (q, t) = −q2H · (q) · S−1 (q) · F (q, t) (64)

−
tˆ

0

duMc,irr (q, t− u) ·H−1 (q) · ∂
∂u

F (q, u) ,
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for F(q, t) in Smoluchowski dynamics. Here, Mc,irr (q, t) is the symmetric m×m matrix of

irreducible collective memory functions,M c,irr
αβ (q, t), which has been introduced for hydrody-

namically interacting particles by one of the present authors. For its microscopic expression

in terms of a force correlation function involving a reduced time evolution operator, we refer

to Nägele et al.33.

By taking the Laplace transform of Eq. (64) in conjunction with Eq. (57), we obtain the

result33

kB T µL =
[
1 + mc,irr ·H−1

]−1 ·H , (65)

which expresses µL in terms of the zero-wavenumber limit of the time-integrated memory

function matrix,

mc,irr = lim
q→0

ˆ ∞
0

dt Mc,irr (q, t) , (66)

and in terms of

H = lim
q→0

H (q) . (67)

Using the Woodbury matrix inversion formula62, we can deduce from Eq. (65), the

relaxation part of the mobility matrix, with the result

kBT ∆µαβ = −
(
mc,irr ·

[
1 + H−1 ·mc,irr

]−1)
αβ
. (68)

One easily verifies the symmetry of the matrix on the right-hand side of Eq. (68), in

accordance with the required symmetry of ∆µ. MCT approximations for Brownian particle

mixtures should be introduced on the level of the irreducible memory function matrix33,63–65,

in order to preserve the positive definiteness of long-time self-diffusion and collective diffusion

coefficients, and to obtain for colloidal suspensions at large concentrations a consistent glass-

like dynamic arrest scenario.

A MCT scheme for diffusion properties of Brownian mixtures was formulated before31,33,

where HIs have been accounted for on a pairwise level using the far-field Rotne-Prager (RP)

hydrodynamic diffusivity tensors. In this so-called MCT-HIs approach, the time-integrated

and zero-q limiting irreducible partial memory functions are approximated by

mc,irr
αβ =

D0
αD

0
β

2 (2π)3 (nαnβ)1/2

ˆ ∞
0

dt

m∑
γ,δ,γ′,δ′=1

ˆ
d3kVα;γδ (0,k) Vβ;γ′δ′ (0,k)

×Fγγ′ (k, t)Fδδ′ (k, t) . (69)
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Here, Vα;γδ (0,k) abbreviates the zero-q limit of the vertex function,

Vα;γδ (q,k) = V p
α;γδ (q,k) + V h

α;γδ (q,k) (70)

consisting of a pair potential (p) and a hydrodynamic (h) part33.

Explicit expressions for the vertex function, and a detailed discussion of the assumptions

and approximations underlying Eq. (69) have been given elsewhere31,33. For readers familiar

with MCT, we note that the HIs have been included using the same factorization of the

four-point dynamic density correlator as employed in the MCT of atomic mixtures66–69.

The MCT-HIs scheme underlying Eq. (69) includes therefore the standard MCT result for

non-hydrodynamically interacting Brownian particles as a limiting case. We further note

that the convolution approximation of static triplet distribution functions employed in the

multicomponent MCT is consistent with the equilibrium local electro-neutrality condition8,9.

If HIs are neglected in the vertex contribution, i. e. taking V h
α;γδ = 0, Eq. (69) reduces to

mc,irr
αβ =

Dα
0 D

β
0

6π2 (nαnβ)1/2

ˆ ∞
0

dt

×
ˆ ∞
0

dkk4
{
Fαβ (k, t) (C (k) · F (k, t) ·C (k))αβ

− (C (k) · F (k, t))αβ (F (k, t) ·C (k))αβ

}
. (71)

Here, C (q) is the m × m matrix of concentration-scaled partial direct correlation func-

tions in Fourier space, (nαnβ)1/2 cαβ (q), related to the static structure factor matrix of the

unperturbed system by the Ornstein-Zernike matrix equation8,51

S (q) = [1−C (q)]−1 . (72)

The present MCT-HIs scheme for ∆µLαβ has the static pair distribution functions as the

only input. In the PM, the direct correlation function matrix is of the form8

C (q) = C(s) (q)− κ2

q2
P , (73)

where the non-ideal matrix part, C(s)(q), is regular at q = 0. It describes the shorter-range

part of the direct correlations arising, in particular, from ion excluded volume interactions,

and it can be calculated on different levels of approximation. Particularly convenient for

MCT calculations is Blum’s analytic mean spherical approximation (MSA) solution70,71 for

the unrestricted PM, and the analytic direct correlation function matrix of equal sized ions
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given by Attard8. Blum’s and Attard’s solutions satisfy the local electroneutrality and

charge-oscillation moment conditions9, and in the point-ion limit they both reduce to the

DH form of the direct correlation function matrix where C(s)(q) is taken to be zero.

The HIs in the MCT-HIs scheme are here accounted for on the RP level of approximation

where hydrodynamic flow reflections are neglected, and stick hydrodynamic boundary con-

ditions on the PM ion surfaces are assumed72. The diffusivity tensors in RP approximation

are given by Dαα
ii = D0

α and Dαβ
ij = kBT TRP

αβ (r) for ion pairs i 6= j, where

TRP
αβ (r) =

1

8πη0

[
1

r
(1 + r̂ r̂) +

a2α + a2β
3r3

(1− 3 r̂ r̂)

]
(74)

and r = Rα
i − Rβ

j . Thus, DS
α is approximated on the RP level by its zero concentration

value D0
α. The distinct part of H (q) is given in RP approximation by the integral

Hd
αβ (q) = (nαnβ)1/2

[ˆ ∞
aα+aβ

dr rKαβ(q, r)hαβ (r) (75)

−2kBT

3η0

(
a2α + a2β + 3aαaβ

) j1(q [aα + aβ])

q [aα + aβ]

]
,

involving the RP kernel function

Kαβ(q, r) =
kBT

3η0

[
3

(
j0(qr)−

j1(qr)

qr

)
+ q2

(
a2α + a2β

) j2(qr)
(qr)2

]
. (76)

Here, hαβ(r) is the real-space partial total correlation function for an (α, β) pair of ions

separated by the distance r, jn is the spherical Bessel function of order n, and aα is the

hydrodynamic radius of α-component ions. The expression for Hd
αβ(q) in Eq. (75) is al-

ready regularized at q = 0, and it describes an O(q−2) asymptotic decay for large q. While

constituting an approximation, the RP approximation has the desirable features of account-

ing for the salient monopolar and dipolar HIs contributions, and of preserving the positive

definiteness of the exact hydrodynamic function matrix Hex (q). The derivation of the RP

approximation on basis of a minimal dissipation theorem39,73,74 implies the positive defi-

niteness also of HRP(q)−Hex (q). The RP approximation can be thus used to obtain upper

bounds on the exact short-time diffusion and sedimentation coefficients (see, e.g. Gilleland

et al.39).

The MCT-HIs scheme for ∆µLαβ allows in principle for a unified analysis of conduction-

diffusion properties of electrolyte mixtures and charge-stabilized colloidal suspensions, with

the salient influence of the HIs accounted for. In recent work30, we have derived a related
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MCT-HIs scheme for the viscosity and shear stress relaxation function of electrolyte mix-

tures. The electrolyte viscosity results from the MCT-HIs scheme30 have been obtained

using a simplified treatment of the associated coupled MCT-HIs equations. A simplified

MCT treatment of conduction-diffusion properties is discussed in the following.

C. Simplified treatment

The numerical evaluation of the MCT-HIs expressions for the mobility coefficients, ∆µLαβ,

of an m-component electrolyte requires as an intermediate step the self-consistent numerical

MCT calculation of allm(m+1)/2 dynamic structure factors Fαβ(q, t). This is a cumbersome

task, in particular when HIs are included. However, as discussed before30, for moderately

concentrated electrolytes, F(q, t) can be expected to be only modestly perturbed from its

short-time form FS(q, t). It is then reasonable to solve the coupled equations approximately

in a single iterative step, by using the short-time form

FS (q, t) = e−q
2H(q)·S−1(q) t · S (q) , (77)

of F(q, t) as the dynamic input to Eqs. (69) and (71), and on neglecting in addition the

hydrodynamic vertex contribution so that Eq. (71) for mc,irr can be used. This simplified

MCT-HIs scheme allows for great analytic progress, as it was shown in related calculations

of the electrolyte viscosity30, and it can be profitably used for analyzing general trends.

The short-time form of F(q, t) is the sum of m exponentially decaying normal modes,

FS (q, t) =

(
m∑
i=1

Λi (q) e−λi(q) t

)
· S (q) , (78)

where the λi (q) are the positive eigenvalues (relaxation rates) of the positive definite short-

time relaxation matrix q2 H (q) · S−1 (q). There are a few cases where the normal mode

expansion can be carried out analytically, including the PM mixtures consisting of ions of

equal single-particle diffusion coefficient, binary electrolytes of differently mobile ions, and

mixtures of two binary electrolytes.

According to the Abel-Galois-Rufinni theorem, it is in general not possible to determine

the eigenmodes analytically for more than four ion components. In general, a numerical

calculation is required to obtain the λi (q), and the associated mode amplitude matrices

Λi (q). For ions with nearly equal D0
α, a perturbation expansion method with respect to
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the relative difference in the diffusion coefficients can be used, as employed in the work by

Onsager5. For an analytically diagonalizable relaxation matrix, the normal modes can be

constructed from the application of the Cayley-Hamilton theorem, as implemented in the

method of Cheng and Yau75 used in the present work.

In the m-component PM, there exists a non-diffusive, so-called Debye mode, whose eigen-

value

λEL(q) = κ2Tr [P ·H] +O(q2) , (79)

is non-zero at q = 0, different from all the otherm−1 eigenvalues which are ofO(q2). Here, P

is the projector on charge-density fluctuations defined in Eq. (61) and κ is the Debye-Hückel

parameter defined in Eq. (63). Local electroneutrality commands that ΛEL (q) · S(q) =

O(q2). The Debye mode originates from the long-range nature of the Coulomb forces. The

associated Debye time, τEL = 1/λEL(0), is the characteristic relaxation time required for a

spatial charge density fluctuation of wavelength ∼ 1/κ to relax towards equilibrium, under

the slowing influence of the HIs embodied in H. For a one-molar aqueous 1− 1 electrolyte

solution, τEl ∼ 14 ns.

Numerical results for conduction-diffusion transport coefficients of more concentrated

solutions, obtained from the present simplified MCT-HIs using Attard’s static input for

finite-sized ions, are discussed in the accompanying paper II. In the following, we restrict

ourselves to mixtures of pointlike ions where fully analytical results can be obtained. We

show that, as a basic requirement, the DFOF limiting law expressions for the molar con-

ductivity, electrophoretic mobilities, and self-diffusion coefficients are recovered from our

MCT-HIs scheme in the limit of very low concentrations.

We close this section by noting that for more concentrated electrolyte systems (concen-

trations typically larger than 1 - 2 M) the memory contributions in Eq. (64), i.e. the

longer-time ion cloud relaxation contributions, are significant and lead to an overall slower

decay of F(q, t) at longer times. The slower decay can be approximately accounted for,

while preserving the form of an m-mode exponential decay, on using instead of FS(q, t) the

symmetric matrix,

FM(q, t) = exp
{
− q2 t

(
H(q)+kBT (∆µ)self

)
· S−1(q)

}
· S(q) , (80)

as an approximation for the dynamic structure factor matrix F (q, t) entering into Eq.

(71). The searched-for long-time mobility matrix µL, with its self-correlation relaxation
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part kBT (∆µ)self = DL − DS consisting of the diagonal matrices
(
DL
)
αβ

= δαβ D
L
α and(

DS
)
αβ

= δαβ D
S
α , can be calculated self-consistently via iteration using DL = DS as the

starting input. For large values of q where S(q)→ 1 and H(q)→ DS , FM(q, t) reduces to a

diagonal matrix which has the self-intermediate partial scattering functions in the long-time

Markovian limit, given by exp{−q2DL
α t}, as its non-zero entries. In using Eq. (80) as an

approximation for the exact F(q, t), one assumes that cross-correlation relaxation contribu-

tions, in addition to those contained in H (q), can be disregarded relative to the stronger

self-correlations. Refined calculations based on a self-consistent approach such as the one

discussed here will be analyzed elsewhere. For the special case of (colloidal) self-diffusion,

a self-consistent simplified MCT-HIs approach similar to the one discussed here has been

employed before31,76.

V. ANALYTIC RESULTS FOR POINTLIKE IONS

At very low electrolyte concentrations (i.e., nT . 0.01 M), we can neglect C(s)(q) in

Eq. (73) and treat the ions as pointlike particles. This results in the Debye-Hückel (DH)

approximation for the direct correlation function matrix, CDH (q) = −κ2P/q2, with the

corresponding DH static structure factor matrix given by

SDH (q) = Q +
q2

q2 + κ2
P . (81)

Here, Q = 1−P is them×m projector matrix on them−1 dimensional subspace orthogonal

to the subspace of charge-density fluctuations, with the matrix elements of P defined in Eq.

(61).

The HIs between point particles are accounted for exactly on the Oseen level, where

the distinct part of the hydrodynamic function matrix is obtained from taking the zero ion

radius limit, aα → 0, in Eq. (75). The subsequent insertion of the DH radial distribution

functions leads to the pointlike ion result,

Hd
αβ (q) = −DκF

Os (q/κ) Pαβ , (82)

which contains the Oseen function

FOs (x) =
3

4x3
[
x+

(
x2 − 1

)
arctan (x)

]
. (83)
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This function decays monotonically with increasing x from the initial value FOs (0) = 1

to the limiting value zero for large x. The function Hd
αβ(q) for pointlike ions has an 1/q

asymptotic decay which is slower than that of its non-zero ion diameter counterpart. The

latter decays asymptotically like 1/q2.

In Eq. (82),

Dκ =
kBT

6πη0
κ (84)

is a diffusion coefficient associated with the Debye screening length 1/κ. The complete hy-

drodynamic function matrix of pointlike ions with DH pair correlations is given in projector

representation by

Hαβ (q) = D0
αQαβ +

(
D0
α −DκF

Os (q/κ)
)
Pαβ , (85)

where for pointlike ions the D0
α are treated as independent input parameters. For a dilute

electrolyte, Dκ � D0
α holds for all ion components.

A. Short-time transport properties

Using Eq. (85) for H(q), the short-time part of the mobility matrix follows as

kBTµ
S
αβ = δαβD

0
β −DκPαβ . (86)

Together with Eq. (38), this leads to the well-known DFOF limiting law result4,

µel,Sα = µel,0α −
zαe

6πη0
κ , (87)

for the short-time part of the steady-state electrophoretic mobility of α-type ions. The

electrophoretic mobility of an isolated α-type ion, µel,0α , is reduced by the electrophoretic

effect which, according to κ ∝ √nT , leads to a negative-valued contribution with a square-

root in concentration dependence. According to Eqs. (39) and (87), this dependence is

explicitly

∆µel,Sα =
(
∆µel,Sα

)cross
= − zαe

kBT
Dκ . (88)

The short-time part of the molar conductivity of α-type ions follows readily from the

short-time version of Eq. (7) as

λel,Sα = λel,0α −
z2αeF
6πη0

κ . (89)
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Likewise, the short-time specific conductivity and molar conductivity are obtained, using

Eqs. (6) and (8), as

σS = σ0 − nT
z2e2

kBT
Dκ , (90)

and

ΛS = Λ0 −

(
m∑
α=1

να z
2
α

)
eF

6πη0
κ , (91)

respectively. Here,

σ0 = nT z2
e2

kBT

∑
α

PααD
0
α (92)

and

Λ0 =
m∑
α=1

ναλ
el,0
α (93)

are the zero concentration limiting values of σ and Λ.

All the considered short-time transport properties show the characteristic square-root in

concentration dependence, characteristic of the limiting law transport properties of strong

electrolytes. We recall that the electrophoretic effect caused by the HIs is operating on the

short-time level. HIs contribute also to the relaxation effect, but only at larger than linear

order in κ. Thus, in the limiting law regime of very small ion concentrations, the relaxation

effect part of the conduction-diffusion properties is determined solely by the electrostatic

interactions.

B. Limiting law results for long-time properties

In the following, we show that for very low concentrations where Dκ � D0
α is valid,

the DFOF limiting law results for conduction-diffusion properties are recovered from our

MCT-HIs scheme. In previous work30, we have shown that the limiting law expressions for

the electrolyte viscosity and shear modulus are recovered from a corresponding MCT-HIs

scheme describing linear viscoelasticity of Brownian particles.

Before embarking into the discussion of specific systems, we note that in a strongly dilute

mixture F(q, t) is represented, to good accuracy, by its short-time form given in Eq. (77),

specialized to pointlike ions with S(q) = SDH(q) and H(q) given by Eq. (85). Furthermore,

Eq. (71) can be used for mc,irr since, to linear order in κ ∝ √nT , the time-integrated

memory function matrix is independent of the HIs. This follows from V p
α;γδ = O(κ0) and
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V h
α;γδ = O(κ), with the latter relation being valid33 owing to Hd(q) ∝ κ, and to the fact

that mc,irr is of O(κ) already without HIs. Thus, in agreement with the DFOF theory, the

MCT-HIs predicts that the first-order in κ relaxation parts of the transport coefficients are

independent of the HIs.

1. Ions with equal individual diffusion coefficients

For pointlike ions where for all ion components D0
α = D0, the normal mode expansion

for FS(q, t) is obtained analytically as

FS (q, t) = e−q
2D0tQ +

q2

q2 + κ2
e−λEL(q) tP , (94)

with the Debye mode relaxation rate given by

λD(q) =
(
q2 + κ2

) [
D0 −DκF

Os(q/κ)
]
. (95)

The Debye rate includes the slowing influence of the HIs on the relaxation of charge con-

centration fluctuations by means of the term proportional to DκF
Os.

Substitution of CDH (q) = −κ2 P/q2, and Eq. (94) for the FS(q, t) without HIs into Eq.

(71), leads after a straightforward calculation to the result,

1

D0
mc,irr
αβ = fpκLB zαzβ (δαβ − Pαβ) , (96)

for the time-integrated memory function matrix. Here, fp =
(
2−
√

2
)
/6 is a numerical

coefficient characteristic of the electrostatic interactions and Pαβ is defined in Eq. (61). One

notices from Eq. (96) that mc,irr ∝ κ without HIs, and that HIs contribute to the MCT

memory (relaxation) part first to O(κ2). Recall here that the (short-time ) electrophoretic

contribution to the electrophoretic velocity of pointlike ions is also linear in κ.

According to Eq. (68), the relaxation part of the long-time mobility coefficients is ob-

tained to first order in κ from

kBT ∆µαβ = −mc,irr
αβ +O

(
κ2
)
. (97)

Using Eq. (44), DFOF results for the self- and cross correlation contributions to the relax-

ation part of the mobility matrix are readily identified on basis of Eq. (96) as

kBT

D0
(∆µαα)self = −z2α fpκLB + O

(
κ2
)

(98)
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and
kBT

D0
(∆µαβ)cross = zαzβ f

pκLBPαβ + O
(
κ2
)
, (99)

respectively.

The corresponding DFOF-type self- and cross terms of the relaxation contribution to the

ion-component-specific electrophoretic mobilities follow with Eq. (42) as(
4µelα

)
self/µel,0α = −z2α fpκLB +O

(
κ2
)

(100)

and (
4µelα

)
cross/µel,0α = zα

z3

z2
fpκLB +O

(
κ2
)
. (101)

The relaxation contribution to the electrophoretic mobility is of quadratic order in the va-

lencies, whereas the short-time electrophoretic contribution has a linear charge dependence.

From Eqs. (100) and (16), we obtain

DL
α

D0
= 1− z2α fpκLB +O

(
κ2
)

(102)

for the limiting law long-time self-diffusion coefficient of α-type ions. Moreover, from col-

lecting the parts in (41) given in Eqs. (88) and (101),

(
µelα
)
cross = − zαe

kBT
Dκ +

z3

z2
zαf

pκLB µ
el,0
α +O

(
κ2
)

(103)

is obtained for the low-concentration cross-correlation contribution to the electrophoretic

mobility. Here, z3 is the third moment of the ion valency distribution (cf. Eq. (62)). For

purely monovalent ions, z3 = 0 and the cross-correlation relaxation mobility contribution

vanishes.

The MCT-HIs results presented here agree with the DFOF limiting law results for the

electrophoretic mobility4, and the long-time self-diffusion coefficient6, respectively. Eqs.

(16) and (103) quantify, in the limiting law regime, the relative importance of the cross

correlations contribution to the electrophoretic mobility which is left out in the Nernst-

Einstein relation in Eq. (17).

We note that if HIs are neglected regarding the relaxation effect contributions, and D0
α =

D0 is used in conjunction with the DH approximation, an analytic expression for ∆µαβ is

obtained for all (physically allowed) values of κ. The derivation of this expression is included

in the Appendix.
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2. Binary electrolyte solution

Consider next a binary zc : za electrolyte solution of pointlike cations and anions, with

valencies {zc, za} and single-ion diffusion coefficients {D0
c , D

0
a}, where D0

a can be different

from D0
c . As in the previous subsection, HIs are ignored in the relaxation effect, implying

H(q) = D0 with a 2 × 2 diagonal matrix (D0)αβ = D0
α δαβ which for D0

a 6= D0
c does not

commute with S−1(q). This makes the normal mode expansion somewhat more difficult to

perform. After some calculations, we obtain the symmetric dyadic form

mc,irr
αβ = (−1)α+β (|zαzβ|)1/2

D0
αD

0
β

D+

xc|zc|f binκLB , (104)

for the MCT memory function without HIs, where α ∈ {c, a}, D+ = D0
c +D0

a, and xa|za| =

xc|zc|. Furthermore,

f bin =
1

3
(

1 +
√
D/D+

) (105)

and

D =
zcD

0
c − zaD0

a

zc − za
=
D0
cD

0
a

D0
NH

, (106)

where D0
NH is the Nernst-Hartley mutual diffusion coefficient3,77,

D0
NH = D0

cD
0
a

Pcc + Paa
D0
c Pcc +D0

aPaa
, (107)

of an ultradilute binary electrolyte, referred to in the literature also as the chemical or am-

bipolar diffusion coefficient. It quantifies the coupled diffusion, enforced by local electroneu-

trality, of cation-anion complexes along thermally induced density gradients. Eq. (107)

shows explicitly that D0
NH > 0. For cations and anions with equal diffusion coefficient, it

follows that D0
NH = D0 and f bin = 2fp.

To make contact with Eq. (96), valid for ions of equal individual diffusion coefficients,

note that mc,irr
αβ in Eq. (104) can be alternatively expressed for a binary electrolyte by the

sum of self- and cross-correlation parts,

mc,irr
αβ =

D0
αD

0
β

D+

LB
3

κ2

κ+ κd
zαzβ (δαβ − Pαβ) , (108)

where the square root of

κ2d = 4πLBnT

m∑
γ=1

D0
γ

D+

xγ z
2
γ (109)
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reduces to κd = κ/
√

2 for anions and cations of same individual diffusion coefficients. As

before, Pαβ is defined in Eq. (61).

The relaxational mobility matrix, ∆µ, is obtained using Eq. (68) from noting that

1+H−1 ·mc,irr is of the dyadic form 1+vwT , with vα = (−1)α (|zα|)1/2
√
xc|zc|f binκLB/D+

and wβ = D0
β vβ, so that mc,irr

αβ = wαwβ. Application of the Sherman-Morrison matrix

inversion formula leads to the result

kBT ∆µαβ = − wαwβ
1 + wT · v

. (110)

The relaxation part of the electrophoretic mobility of α-type ions follows from this expression

as (see Eq. (4))

∆µelα = −µel,0α

wT · v
1 + wT · v

, (111)

where we have used that

wT · v = −zcza
3

D0
cD

0
a/D

0
NH

1 +
√
D0
cD

0
a/D

0
NH

κLB . (112)

To leading order in κ, the MCT expression for ∆µelα in Eq. (111) agrees with the limiting

law result by Onsager78 who has obtained

4E
E

=
zcza

3

D0
cD

0
a

D+D0
NH

1 +
√

D0cD
0
a

D+D0
NH

κLB < 0 , (113)

for the relaxation electric field part, ∆E, experienced by an ion in a binary electrolyte, and

originating from its distorted microion cloud. Here, E is the strength of the external electric

field. The anions and cations experience the same relaxation field which is collinear with

the external field.

The total partial mobilities are given, using

kBT µ
L
αβ = kBT

(
µSαβ + ∆µαβ

)
= δαβD

0
β −DκPαβ −

wαwβ
1 + wT · v

, (114)

as the sum of the zero-concentration, electrophoretic and relaxation effect parts. The elec-

trophoretic mobility of α-type pointlike ions follows from Eqs. (87), (111) and (84), as

µelα = µel,Sα + ∆µelα

= µel,0α −
zαe

kBT
Dκ − µel,0α

wT · v
1 + wT · v

. (115)
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According to Eq. (111),
∆µelc

µel,0c

=
∆µela

µel,0a

, (116)

which tells us that the ratio of the relaxation electrophoretic mobility part and the zero-

concentration electrophoretic mobility is the same for cations and anions. The cationic and

anionic electrophoretic mobilities of pointlike ions predicted by MCT fulfill this symmetry

property also for larger values of κ, and not only to linear order as in the limiting law

results. A corresponding symmetry relation does not hold for the ratio of the long-time and

short-time self-diffusion coefficients of pointlike ions given by

DL
α

D0
α

= 1 − xα z
2
α

D0
α

D+

f binκLB
(1 + wT · v)

≈ 1− z2α
D0
α

3D+

(
κ

κ+ κd

)
κLB +O(κ2) . (117)

This ratio depends quadratically on zα. We do not quote here the MCT expression for the

specific conductivity, since it is readily obtained using Eq. (6).

3. Mixture of two binary electrolytes

We analyze here an aqueous electrolyte mixture (with LB = 7.1 and T = 25 °C) of two

binary electrolytes with differently mobile ions. The mixture consists of a symmetric 1 : 1

electrolyte of ions with total concentration 2ns and equal free diffusion coefficient D0, and

an asymmetric zp : 1 electrolyte of polyions with valency zp > 1, number concentration

np, and diffusion coefficient D0
p < D0, together with monovalent counterions of diffusion

coefficient D0 equal to that of the symmetric electrolyte. The ions of the 1 : 1 electrolyte

are referred to in the following as the salt ions. As we discuss now, this system reveals

an unexpected, non-monotonic dependence of the polyion electrophoretic mobility, µelp , on

the polyion concentration np. A related non-monotonic concentration dependence of the

excess shear viscosity in this mixture, as a function of ns instead of np, was discussed in our

previous work30 .

Since the non-monotonicity µelp is observed at low concentrations, we can restrict our

analysis to the point-ion limit without having to account for HIs in the relaxation part.
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Each of the two electrolytes is globally electroneutral, so that

κ2 = 4πLB

[(
1 +

1

zp

)
npz

2
p + 2ns

]
, (118)

is valid for the square of the Debye screening parameter, and

ω = 4πLB

[(
D0
p +

D0

zp

)
npz

2
p + 2D0ns

]
, (119)

for the Debye frequency ω = λD(q = 0). In writing these last two relations we have made use

of Eq. (63) and of the fact that −nczc = npzp, where nc is the counter-ion number density

associated with the polyion species and zc = −1. Thus, κ and ω can be varied independently

by changing either the 1:1 electrolyte concentration ns, or the polyion concentration np.

We have derived analytic MCT expressions for the partial electrophoretic mobilities in

this four-component system which, when expanded to first order in κ, reduce to the DFOF

limiting law results4. We refrain from showing the lengthy mobility expressions and discuss

instead their numerical predictions.

The unexpected behavior of the polyion electrophoretic mobility as a function of np is

exemplified in Fig. 1, where µelp is shown for three different salt concentrations. On first

sight, µelp is expected to decrease monotonically with increasing np, and this is indeed what

happens in the absence of the symmetric electrolyte (solid curve in Fig. 1). The polyion

mobility result for ns = 0 and small values of np conforms with the limiting law behavior

µelp = µel,0p − A √np for a binary electrolyte, where A is concentration independent. For

non-zero salt concentration, however, a non-monotonic polyion concentration dependence of

µelp is observed, with a mobility maximum occurring at a very small value of np (dashed and

dotted curves in Fig. 1). With increasing ns, the maximum becomes less pronounced, and

its position is shifted to larger polyion concentrations.

To understand the non-monotonic behavior of µelp , we first realize that it originates from

the relaxation effect, since the short-time electrophoretic mobility contribution, ∆µel,Sp =

µel,Sp − µel,0p = −zpeDκ/(kBT ), decreases with increasing np. The electrophoretic and relax-

ation effect contributions to the electrolyte electrophoretic mobilities (and conductivities)

are in general comparable in magnitude. This is illustrated in Fig. 2 showing the ratio,

∆µelp /∆µ
el,S
p , of relaxation and electrophoretic mobility parts as a function of np, for salt

concentrations as in Fig. 1. The relaxation mobility contribution dominates for small polyion

concentrations.
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Figure 1. Normalized electrophoretic mobility, µelp /µ
el,0
p , of polyions (with zp = 4 andD0

p = 0.8×D0)

in an aqueous mixture of two binary electrolytes, plotted as a function of polyion concentration np.

The other three ion species are monovalent and of same equal free diffusion coefficient D0. Three

different monovalent salt ion concentrations, ns = 0 M, 0.5 mM, and 1 mM are considered.

The non-monotonic behavior of µelp caused by the relaxation effect is explained by the

interplay of two characteristic lengths and their associated time scales. The two lengths are,

respectively, the Debye length 1/κ, characterizing the size of the ionic atmosphere formed

around each polyion, and the mean geometric distance, dp = n
−1/3
p , between two polyions.

The associated time scales are, respectively, the Debye relaxation time τD = 1/ω, character-

izing the relaxation of the ion atmosphere, and the structural relaxation time, τp = d2p/D
0
p,

characterizing the relaxation of next-neighbor polyion concentration fluctuations. We first

note that the two ratios, κ−1/dp and τD/τp, are also non-monotonic in np. The concentration

values of their respective maxima are related to that of µelp /µel,0p by an essentially constant

factor, which is independent of ns. At very low values of np below the concentration value at

the mobility peak where salt ions contribute predominantly to κ in Eq. (118), the decrease

of 1/κ with increasing np is less strong than that of dp, so that the ion atmospheres of two

neighboring polyions approach each other. Since, in addition, τD decreases faster than τp, the
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Figure 2. Ratio of the relaxation effect mobility part, ∆µelp , and the electrophoretic effect mobility

part, ∆µel,Sp , as a function of polyion concentration np. The three considered salt concentrations,

ns, are those given in the legend of Fig. 1 (with identical line code).

relaxation effect becomes weaker and, in consequence, µelp is increased. In fact, for np � ns

and fixed salt concentration, µelp increases initially linearly in np. For polyion concentrations

exceeding the concentration at the mobility maximum, κ is predominantly determined by

the polyions. The resulting decline of µelp with increasing np becomes increasingly similar to

that of a pure binary zp : 1 electrolyte.

The unusual concentration dependence of µpel discussed here nicely illustrates a general

statement by Onsager that unexpected phenomena can appear in asymmetric electrolytes

consisting of several components4.

C. Leading-order HIs contributions to the relaxation effect

The HIs contributions to the relaxation parts of the conduction-diffusion properties have

been disregarded so far. The leading-order HIs contributions to the relaxation parts of the

electrophoretic mobilities, as predicted by the simplified MCT-HIs approximation with DH
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input, are quadratic in κ, i.e. linear in nT . To obtain these contributions analytically, we

assume that all ions have the same single-particle diffusion coefficient D0. From substituting

CDH (q) = −κ2P/q2, and Eqs. (94) and (95) with the HIs contribution to λEL(q) included,

into Eq. (71), we obtain

1

D0
mc,irr
αβ = zαzβ f

eh (κ)κLB (δαβ − Pαβ) (120)

for the time-integrated memory function matrix, where the function

f eh (κ) =
2

3π

ˆ ∞
0

dx
x2

(1 + x2)2 Fm (x, κ)
(121)

includes the contribution by the HIs. Here,

Fm (x, κ) =
1 + 2x2

1 + x2
− Dκ

D0
FOs (x) , (122)

and FOs (x) is defined in Eq. (83). If HIs are ignored, f eh (κ) = fp in agreement with Eq.

(96) for mc,irr
αβ . Remember that Pαβ is defined in Eq. (61).

The integral in Eq. (121) can not be evaluated analytically. However, since (Dκ/D
0)� 1

for small electrolyte concentrations, we can expand the integrand to first order in Dκ/D
0.

The resulting integral is

f eh(κ) ≈ fp + fh
Dκ

D0
, (123)

where fh is a small number given by

fh =
1

16

(
4
√

2 + ln (4)− 3− 4arcoth
(√

2
))
≈ 0.032 (124)

which characterizes the strength of the leading-order HIs contribution.

The memory function matrix in Eq. (120) can thus be written as the sum

mc,irr
αβ =

(
mc,irr
αβ

)p
+
(
mc,irr
αβ

)h
, (125)

where
(
mc,irr
αβ

)p
is the memory function matrix without HIs given in Eq. (96), and

(
mc,irr
αβ

)h
= zαzβDκf

hκLB (δαβ − Pαβ) +O
(
κ3
)

(126)

is the MCT-HIs hydrodynamic contribution up to quadratic order in κ. While the leading

HIs part of O(κ2) is relevant from a general viewpoint as a non-trivial hydrodynamic con-

tribution, its magnitude is very small: For an aqueous electrolyte solution of monovalent
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ions at nT ≈ 0.01 M, the relative contribution of
(
mc,irr
αβ

)h
to mc,irr

αβ is about 7%. Regard-

ing the electrolyte viscosity, a similarly small leading-order hydrodynamic contribution was

obtained30.

Since the matrix in Eq. (120) is of the same structure as the one in Eq. (96), ∆µαβ and

µelα follow readily by the substitution fh → f eh. We are thus in the position to discuss the

leading-order HIs contributions to the relaxation parts of the mobilities. From the results

in the Appendix, and on recalling Eqs. (98) and (99), we obtain

kBT

D0
(∆µαα)self = −z2αfpκLB +

(
z2αf

pκLB
)2 −{Dκ

D0
z2αf

hκLB

}
+O

(
κ3
)

(127)

for the self part, and

kBT

D0
(∆µαβ)cross = zαzβPαβ f

pκLB +

(
z4

z2
−
(
z2β + z2α

))
(fpκLB)2

+

{
zαzβPαβ

Dκ

D0
fhκLB

}
+O

(
κ3
)

(128)

for the cross correlation part.

Furthermore, on recalling Eqs. (16), (13) and (102), the long-time self-diffusion coefficient

of α-type ions with the leading-order hydrodynamic contribution included is obtained as

DL
α

D0
= 1− z2α fpκLB +

(
z2α f

pκLB
)2 − Dκ

D0
z2α f

hκLB +O
(
κ3
)
. (129)

The cross-correlation contribution to the electrophoretic mobility is given, using Eqs. (128),

(33) and (4), by

(
µelα
)cross

= − zαe

kBT
Dκ + zα

z3

z2
fpκLB µ

el,0
α + zα

[
z3

z2
z4

z2
−

(
z2α
z3

z2
+
z5

z2

)]
(fpκLB)2 µel,0α

+

(
zα
z3

z2
Dκ

D0
fhκLB

)
µel,0α +O

(
κ3
)
. (130)

The terms proportional to Dκf
h in Eqs. (129) and (130) are the leading-order HIs contri-

butions to the transport properties. For purely monovalent ions where z3 = 0 = z5, the

electrophoretic part is, to O (κ3), the only non-zero cross-correlation contribution to µelα .

The HIs contribution to the long-time self-diffusion coefficient DL
α in Eq. (129) is of

negative sign. The sign of the total quadratic-order in κ contribution to DL
α according to

Sign
(

(zαf
p)2 − fh kBT

6πη0LBD0

)
(131)
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is positive or negative depending on the solvent and the employed value forD0. Using the val-

ues for the single-ion diffusion coefficients of Na+ and Cl+ in water at room temperature79,

the sign in Eq. (131) is positive, and a small enhancement of DL
α by the quadratic-order

terms is predicted. For Li+ and Ca+ ions, however, the value for DL
α is lowered.

As a consistency check of the MCT-HIs result for DL
α in Eq. (129), we determine DL

α

alternatively from the MCT expression for the self-intermediate scattering function, Gα (k, t),

of α-type ions12,31. In this self-dynamics approach, DL
α is obtained from the exact relation31,

DL
α = DS

α

(
1 +
4ζα
ζSα

)−1
, (132)

where4ζα is the self-correlation friction contribution due to electrosteric and hydrodynamic

interactions, and DS
α and ζSα are the short-time self-diffusion and self-friction coefficients,

respectively. Within the RP approximation of HIs employed in this work, DS
α = D0

α and

ζSα = kBT/D
0
α, and the friction coefficient is approximated in MCT by12,31

∆ζα =
D0
α

(2π)3 nα

ˆ ∞
0

dt

ˆ
d3k Gα (k, t)

m∑
β,γ=1

V
(self)
αβ (k) Fγβ (k, t) V (self)

αγ (k) , (133)

with the MCT self-vertex functions given by

V
(self)
αβ (k) = − (q̂ · k)

m∑
δ=1

(nαnδ)
1/2

[
hαδ (k)− 1

D0
α

hdαδ (k)

]
S−1βδ (k) . (134)

Here, the hαβ(k) are the partial total correlation functions in Fourier space (see Eq. (72)),

and hdαδ (k) = Hd
αδ (k) / (nαnδ)

1/2 are the concentration-scaled distinct partial hydrodynamic

functions. Using in the evaluation of Eq. (133) the same approximations as for the collective

dynamics case, i.e. ignoring HIs in the self-vertex functions and employing the short-time

forms FS(k, t) and GS
α = exp {−k2D0

αt} as input, we obtain

∆ζα
ζ0

= z2αf
eh (κ)κLB , (135)

where in addition identical coefficients D0
α = D0 = kBT/ζ

0 for all ion components have been

assumed. Next, we use the relation,

∆ζα
ζ0

=

(
mc,irr
αα

)self
D0

, (136)

which in fact is exact except for the RP treatment of the HIs. Finally, the comparison with

Eq. (120) shows that the self-correlation part of the time-integrated memory function is

recovered indeed from Eq. (135), and in consequence also Eq. (129) for DL
α .
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VI. SUMMARY AND OUTLOOK

In summary, we have derived a versatile mode-coupling theory (MCT) scheme for the

calculation of linear conduction-diffusion transport properties in strong electrolyte mixtures,

which includes the molar conductivity, and the long-time electrophoretic mobilities and self-

diffusion coefficients of the ion components. The ions are treated on the primitive model level

with the solvent described as a dielectric continuum. The influence of the hydrodynamic

interactions (HIs) is accounted for on a Rotne-Prager (RP) level both in the instantaneous

(electrophoretic) and memory (relaxation) contributions to the transport properties. The

only external input are the static pair correlation functions of the unperturbed system. These

can be obtained on different levels of approximation, e.g., using the analytic mean spherical

approximation (MSA)70,71 and Attard8 solutions for monovalent ions. For size or charge-

asymmetric electrolytes with ion pairing and non-linear screening tendencies, Monte Carlo

simulation, non-linear Ornstein-Zernike integral equation, and dressed-ion theory results are

available80–83. Note that while the present MCT scheme has been developed for steady-state

transport properties, with some additional effort it can be extended to frequency-dependent

transport coefficients.

In the derivation of the MCT scheme, we took advantage of a linear response relation

between the unperturbed dynamic structure factors and the long-time partial mobilities.

The mobilities are expressed in terms of time-integrated, long-wavelength limiting collective

memory functions to which a MCT approximation is applied subsequently. The partial mo-

bilities are of central importance since conduction-diffusion transport coefficients are linearly

related to these quantities. This is also the case for diffusion properties not considered in this

paper, such as the chemical and interdiffusion coefficients. In combination with a related

MCT method for the viscosity, a unifying scheme for linear transport in electrolytes is at

our disposal which can be used, e.g., to test generalized Stokes-Einstein and Nernst-Einstein

relations between diffusion, conduction and viscosity properties. These tests will be the

topic of a separate paper.

In this work, the general framework of the MCT method has been provided as a firm

basis for later applications (see II). Using the Debye-Hückel (DH) equilibrium pair distri-

bution functions as input, fully analytic MCT expressions have been derived for the partial

mobilities and conduction-diffusion properties of pointlike ions with HIs included. As an
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application, we investigated the non-monotonic concentration dependence of the polyion

electrophoretic mobility in a four-component mixture. We could show that this unusual be-

havior of the electrophoretic mobility is due to the different concentration dependence of the

strength of the relaxation effect in the polyion- and salt-ion dominated regimes, respectively.

The maximum of the polyion mobility occurs at a polyion concentration small enough that

the point-ion approximation can be applied.

The Deby-Falkenhagen-Onsager-Fuoss (DFOF) low-concentration limiting law results

with their characteristic
√
nT concentration dependence of the conduction-diffusion prop-

erties are straightforwardly recovered from the analytic MCT results in the limit of very

low concentrations. Hydrodynamic contributions to the relaxation part of the transport

coefficients are predicted by the MCT-HIs scheme to appear first to quadratic order in the

Debye electrostatic screening parameter κ. In the point ion limit where HIs are described

exactly on the Oseen level, an essentially analytic expression for the memory function ma-

trix has been obtained in Eq. (120), from which the O(κ2) contributions to the transport

coefficients have been deduced. These contributions reduce the electrophoretic mobilities

by a few percent only. Note that an additional O(κ2) contribution to the mobilities, aris-

ing from the hydrodynamic vertex functions, has been disregarded in Sec. VC. The MCT

hydrodynamic vertex functions for conduction-diffusion are non-zero in the point-ion limit,

while the vertex function for the viscosity vanishes, for the reason that point particles do

not create hydrodynamic contact stress30.

At larger electrolyte concentrations, the ion excluded volumes are of importance in ad-

dition to the HIs. For moderately large concentrations, we have described a simplified

MCT solution scheme in Sec. IVC which is based on the short-time dynamic structure

factor matrix as the dynamic input to the time-integrated memory function matrix. Quite

importantly, we have applied the MCT scheme plus aforementioned simplifications to the

multi-component matrix memory equation, instead of starting from a single-variable mem-

ory equation for FZZ(q, t) and calculating the specific conductivity according to Eq. (59).

In this way, cross-component correlations are incorporated at least on an approximate level.

The simplified MCT-HIs method accounts for the non-zero ion sizes by means of the non-

ideal direct correlation function matrix C(s)(q), and the ion-size dependent hydrodynamic

function matrix H(q). The latter is treated using, e.g., the Rotne-Prager far-field approxi-

mation for the HIs. The simplified MCT-HIs method has been successfully applied already
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to the calculation of the viscosity of a binary electrolyte solution30. For large electrolyte

concentrations, this method is not applicable any more, and refined solution schemes are

required such as the self-consistent scheme discussed at the end of Sec. IVC.

In the closely related paper II of same title, the simplified MCT-HIs scheme is used

in deriving semi-analytic expressions for conduction-diffusion properties of size symmetric

electrolytes. It is shown that these expressions apply for concentrations extending even up to

two molar. The conduction-diffusion expressions are numerically evaluated and compared to

experimental data, and to results by another MCT-based theoretical method. To estimate

the significance of ion-specific features such as hydration shells, the implications for the

transport coefficients of using mixed slip-stick hydrodynamic surface boundary conditions,

and the effect of solvent permeability are analyzed. The numerical analysis of electrolyte

transport properties in II encloses, in addition, the electrolyte solution viscosity and the

sedimentation coefficient.
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Appendix: Relaxation electrophoretic mobilities of pointlike ions in DH

approximation

An analytic expression for the mobility matrix coefficients of ions with equal diffusion

coefficients follows from inserting the MCT memory function matrix without HI given in Eq.

(96) into Eq. (68), and from realizing using H−1 = 1/D0 that the matrix C = 1+H−1 ·mc,irr

is of the special form C = A+vvT , with vα =
(
fpκLB/z2

)1/2√
xαzα and (A−1)αβ = Bαβ =

δαβ/ (1 + fpκLBzαzβ). Using the Sherman-Morrison matrix inversion formula for C, we

obtain

kBT

D0
∆µαβ = −Bαβzαzβ f

pκLB +
BααvαvβBββ

1− vT ·B · v
, (A.1)
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for the MCT relaxation mobility matrix of pointlike ions without HIs. The associated

relaxation part of the electrophoretic ion mobilities is

∆µelα/µ
el,0
α = −Bααz

2
αf

pκLB +
Bααzα

∑m
β BββPββzβ

1− vT ·B · v
fpκLB , (A.2)

which reduces to the DFOF limiting law expressions in Eqs. (100) and (101) when expanded

to first order in κLB. The quantity vT ·B · v on the right-hand side of Eq. (A.2) increases

with increasing concentration from zero to the value one reached for κ→ 1/ (z2αf
pLB), which

for a solution of monovalent ions corresponds to the very large concentration nT → 40.42

M. However, the result in Eq. (A.2) is not useful for larger concentrations well above the

limiting law regime since then the combined effects of HIs and non-zero ion sizes must be

accounted for.
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