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On the basis of a versatile mode-coupling theory (MCT) method developed in Paper I
[C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134109 (2013)], we investigate the concen-
tration dependence of conduction-diffusion linear transport properties for a symmetric binary elec-
trolyte solution. The ions are treated in this method as charged Brownian spheres, and the solvent-
mediated ion-ion hydrodynamic interactions are accounted for also in the ion atmosphere relaxation
effect. By means of a simplified solution scheme, convenient semi-analytic MCT expressions are
derived for the electrophoretic mobilities, and the molar conductivity, of an electrolyte mixture with
equal-sized ions. These expressions reduce to the classical Debye-Falkenhagen-Onsager-Fuoss re-
sults in the limit of very low ion concentration. The MCT expressions are numerically evaluated for
a binary electrolyte, and compared to experimental data and results by another theoretical method.
Our analysis encloses, in addition, the electrolyte viscosity. To analyze the dynamic influence of the
hydration shell, the significance of mixed slip-stick hydrodynamic surface boundary conditions, and
the effect of solvent permeability are explored. For the stick boundary condition employed in the hy-
drodynamic diffusivity tensors, our theoretical results for the molar conductivity and viscosity of an
aqueous 1:1 electrolyte are in good overall agreement with reported experimental data for aqueous
NaCl solutions, for concentrations extending even up to two molar. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4822298]

I. INTRODUCTION

Electrolyte solutions play a central role in numerous elec-
trochemical and biological processes, and in many indus-
trial applications such as waste water treatment, chemical
waste disposal, electrolysis, corrosion, and biofiltration. An
issue of particular interest is the linear ion transport in strong
electrolyte mixtures, which is the subject of ongoing experi-
mental and theoretical research.1–3 The conduction-diffusion
and rheological transport coefficients for low ion concentra-
tions up to about 10−2 M are well described by the Debye-
Falkenhagen-Onsager-Fuoss (DFOF) limiting law expres-
sions, based on the Debye-Hückel (DH) ion pair distribution
functions (PDFs), with their characteristic square-root in con-
centration dependence.2–8 In more concentrated electrolyte
systems, the concentration dependence of transport properties
is determined not only by the electrostatic interactions, which
are dominating at very low concentrations, but additionally by
ion excluded volume effects and solvent-mediated ion-ion hy-
drodynamic interactions (HIs). The interplay of these generic
interactions, which can be treated theoretically on the primi-
tive model level using a continuum picture of the solvent, of-
fers a severe theoretical challenge to the calculation of trans-
port properties. In addition, ion-solvent specific effects on the
molecular level caused by interactions between ions and sur-
rounding solvent molecules may play a significant role. These
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effects are most influential for the viscosity, and they have
been addressed using concepts such as ion hydration, solvent
polarization by an ion’s electric field, and structure-breaking
and structure-making properties of ions.2, 3, 9–11

Hence, there are analytic-theoretical methods on demand
which allow for the computation of transport properties char-
acterizing electrolyte conductivity, electrophoresis, diffusion,
and viscosity in non-dilute solutions with all non-specific
interactions included, in particular also the long-range HIs.
These methods could help, e.g., to partially disentangle the
ion-solvent specific effects on ion transport from the non-
specific ones.

Various routes have been followed in the past for cal-
culating conduction-diffusion and rheological transport prop-
erties of non-dilute electrolyte solutions. These routes are
mainly based on the primitive model (PM)12, 13 where the
(hydrated) ions are treated as uniformly charged Brownian
spheres embedded in a structureless Newtonian fluid charac-
terized by the static dielectric constant ε and the shear viscos-
ity η0. The dynamics of the PM ions is commonly described
by the many-particle Smoluchowski equation in conjunc-
tion with the Stokes equation of low-Reynolds-number sol-
vent flow.2, 14, 15 Falkenhagen3 and Ebeling et al.16, 17 have ex-
tended the classical DFOF continuity equations approach to
finite ion sizes. A considerable improvement over the classi-
cal DFOF theory was obtained by Bernard and co-workers in
a series of publications18–23 where the DFOF approach has
been combined with the analytic mean spherical approxima-
tion (MSA) solution24, 25 for the ionic pair PDFs. The in gen-
eral non-negligible influence of the HIs on the relaxation parts
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of the conduction-diffusion transport properties is disregarded
in their treatment, except for the special case of self-diffusion.
Moreover, the electrolyte viscosity has not been considered in
their works.

In recent works, Chandra et al. have combined MCT with
dynamic density functional theory (DDFT) arguments in de-
riving expressions for the molar conductivity and viscosity of
strong electrolyte solutions.26–29 The excluded volume of the
ions is incorporated in their hybrid method using Attard’s an-
alytic generalization of the Debye-Hückel PDFs.12 However,
the influence of the HIs on the electrolyte viscosity, and on
the relaxation effect contribution to the conductivity, has been
disregarded in their MCT-DDFT treatment.

In the present paper, we present theoretical results for
steady-state conduction-diffusion and rheological transport
properties of binary electrolytes. These results are based
on the PM, and the generalized Smoluchowski equation for
the ion dynamics with the HIs accounted for. Our results
are obtained using a simplified solution scheme of a versa-
tile MCT method for linear transport properties of electrolyte
mixtures, referred to as the simplified MCT-HIs scheme. For
conduction-diffusion properties, this scheme has been devel-
oped in Paper I,85 and for viscoelastic properties in a previ-
ous publication by the authors.30 In Paper I,85 analytic MCT
expressions have been derived for pointlike ions with HIs in-
cluded. These expressions reduce, for very low ion concentra-
tions, to the corresponding DFOF limiting law results.

On the basis of the simplified MCT-HIs scheme, semi-
analytic MCT expressions for conduction-diffusion properties
of a symmetric binary electrolyte are derived in the present
work which apply also to non-dilute solutions. The simpli-
fied MCT-HIs expressions for the electrophoretic mobility,
molar conductivity, self-diffusion, and sedimentation coeffi-
cients, and for the electrolyte viscosity are numerically eval-
uated using Attard’s PDFs as the static input. The importance
of HIs for the various transport properties is assessed from the
comparison with corresponding results without HIs. More-
over, our theoretical results are compared with experimental
data for the conductivity and viscosity of a 1:1 electrolyte, and
with results obtained by the MCT-DDFT method of Chan-
dra and Bagchi.27–29 To investigate the dynamic influence of
the ion hydration shells on a coarse-grained, continuum level
of description, the significance of mixed slip-stick hydrody-
namic surface boundary conditions, and the effect of solvent
permeability are explored (see Fig. 1). A consistently good
agreement between reported conductivity and viscosity data
for aqueous NaCl solutions and our MCT results is obtained,
without any adjustable parameter, for stick boundary condi-
tions employed for the hydrodynamic diffusivity tensors, and
for concentrations extending even up to two molar.

The paper is structured as follows: Sec. II includes a dis-
cussion of the static PDFs input, and results for the hydro-
dynamic functions contributing to the linear transport prop-
erties of electrolyte solutions. Our results for the short-time
and steady-state conduction-diffusion properties, as functions
of the total ion concentration, are presented in Sec. III. The
steady-state properties are calculated using semi-analytic ex-
pressions obtained from the simplified MCT-HIs treatment.
The theoretical results for the conductivity are compared with

a

lslip

aP

FIG. 1. Sketch of the PM-type ion-sphere model used in this work. Here, a is
the hydrodynamic radius of the hydrated ion, identified for simplicity with the
excluded volume radius, and lslip is the hydrodynamic slip length appearing
in the Navier mixed slip-stick hydrodynamic surface boundary condition (see
Sec. IV). The hydrodynamic radius differs in general from the Pauling ionic
radius, aP, measured in crystallography experiments. For structure-making
ions such as Na+ in water, a > aP is observed.

those by Bagchi and Chandra.27–29 Moreover, the importance
of HIs contributions to the relaxation parts of the transport
coefficients is assessed. The results presented in Secs. II and
III have been obtained using the stick hydrodynamic bound-
ary condition (BC). The effects of mixed slip-stick BCs and
possible solvent-permeability of ions on the electrolyte trans-
port properties are analyzed in Sec. IV and in Appendix C.
This analysis encloses also the electrolyte viscosity and sedi-
mentation coefficient in the PM. Finally, Sec. V contains our
conclusions.

To avoid repetitions, we will refer in the following to
equations given already in Paper I85 using the format (I.· · · ),
where · · · stands for the referenced equation number in
Paper I.85

II. STATIC INPUT AND HYDRODYNAMIC
INTERACTIONS

In this section, we describe the analytic pair distribution
functions used as input in the simplified MCT-HIs scheme
calculations of electrolyte transport properties. Moreover, we
specify the hydrodynamic diffusivity tensors employed in cal-
culating the global hydrodynamic functions which contribute
to the investigated short-time and steady-state conduction-
diffusion and viscoelastic properties. Results for the global
hydrodynamic functions are presented.

We treat strong electrolyte mixtures on the PM level
where the hydrated electrolyte ions of components α = 1, . . . ,
m are described as uniformly charged hard spheres interact-
ing statically by Coulomb and excluded volume forces. The
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solvent is modeled as a structureless continuum, characterized
statically by the Bjerrum length LB = e2/(εkBT) (in Gaussian
units), with proton charge e and static dielectric constant ε at
temperature T, and dynamically by the shear viscosity η0. To
allow for an analytic treatment, we assume that all ions of the
electrolyte solution have the same excluded volume radius a
(diameter σ = 2a) taken equal to the hydrodynamic radius,
and the same single-ion translational diffusion coefficient D0.
The ions of component α are characterized by the single-ion
charge zαe, and the mean number concentration nα , so that

nT =
m∑

γ=1

nγ (1)

is the total number density of ions in solution. Furthermore,

zp =
m∑

α=1

xαzp
α, (2)

with p ∈ {1, 2, · · · }, is the pth moment of the ion valency
distribution, and xα = nα/nT is the molar fraction of α-type
ions. Total charge neutrality commands that z = 0.

A. Static pair distribution functions input

Let cαβ(q) denote the Fourier transform of the partial di-
rect correlation function, cαβ(r), of two ions of components
α and β, separated by the centre-to-centre distance r. In the
linear MSA and Attard approximations for ions with equal
excluded volume diameter σ , the symmetric m × m matrix,
C(q) with elements Cαβ(q) = √

nαnβcαβ(q) can be orthogo-
nally decomposed as

C(q) = nT cHS(q)Pn + nT z2 cEL(q)P, (3)

where cHS(q) is the Fourier transform of the direct correlation
function, cHS(r), of neutral hard spheres of reduced particle
concentration

n∗
T = nT σ 3, (4)

and associated volume fraction φT = πn∗
T /6. The m × m ma-

trices P and Pn with elements

Pαβ = (xαxβ)1/2zαzβ

z2
, (5)

and

Pn,αβ = (xαxβ)1/2, (6)

are the projectors on the charge-density fluctuations and
ion total number density fluctuations subspaces, respectively,
which we have introduced already in Paper I.30, 85

In the MSA, cHS(q) is given analytically by the Percus-
Yevick (PY) solution for monodisperse hard spheres,31

whereas the electric direct correlation function part, cEL(q),
is obtained from Fourier transforming the analytic solution
for cEl(r) obtained by Waisman and Lebowitz.32 The analytic
Attard expressions are discussed further down. In the point-
ion limit, both methods reduce to the DH result cHS(r) = 0
and cEL(r) = −LB/r, with corresponding Fourier transforms
cHS(q) = 0 and cEL(q) = −4πLB/q2.

For an electrolyte consisting of ions with equal diameter
σ , it is convenient to introduce the diameter-scaled dimen-
sionless wavenumber y = qσ and pair distance x = r/σ . The
dimensionless, scaled direct correlation function constituents,
cY(y), defined by n∗

T cY (y) = nT cY (q) with Y = {HS, EL}, are
related to their real-space dimensionless counterparts, cY(x),
by the one-dimensional Fourier-sine transform

n∗
T cY (y) = n∗

T

4π

y

∫ ∞

0
dx x cY (x) sin[y x]. (7)

Throughout this work we stick to the standard physics con-
vention of using the same symbol for a function whose argu-
ment is expressed in different units, with the unit made visi-
ble by the employed argument symbol. The direct correlation
functions matrix, C(y), considered as a function of reduced
wavenumber y, is thus given by

C(y) = n∗
T cHS(y)Pn + n∗

T z2 cEL(y)P. (8)

The associated static structure factor matrix, S(y), has the
orthogonal decomposition

S(y) = (1 − C(y))−1 = Q + SHS(y)Pn + SEL(y)P. (9)

Here, 1 is the m × m unit matrix, and

SHS(y) = 1

1 − n∗
T cHS(y)

(10)

and

SEL(y) = 1

1 − n∗
T z2cEL(y)

. (11)

Moreover,

Q = 1 − P − Pn, (12)

and the three projection matrices {Q, Pn, P} are mutually
orthonormal. In the DH point-ion limit, SHS(y) = 1 and

SEL(y) = y2

y2 + (κσ )2
, (13)

with the Debye screening parameter, κ , given by

κ2 = 4πLBnT z2 . (14)

In the MSA and Attard approximations for equal-sized
ions, the partial total correlation functions, hαβ(x), which are
related to the cαβ (x) by the m-component Ornstein-Zernike
equations, can be decomposed according to12, 24, 32

hαβ(x) = hHS(x) + zαzβ hEL(x), (15)

into pure hard-sphere and electro-steric parts. The real-space
total correlation functions hHS(x) and hEL(x), which are used
as static input in the calculation of the hydrodynamic func-
tions, are numerically calculated by Fourier inversion of the
analytically known right-hand sides of30

hHS(y) = cHS(y)SHS(y) (16)

and

hEL(y) = cEL(y)SEL(y), (17)
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respectively. In the Attard approximation, hHS(x) = −θ (1 − x)
and

hEL(x) = −LB

σ

�ren

x
e−κrenσ (x−1)θ (x − 1) , (18)

are both known analytically. Here,

κren = κ√
1 − (κσ )2/2 + (κσ )3/6

(19)

and

�ren = κ2
ren

κ2 (1 + κrenσ )
(20)

are renormalized screening and coupling parameters, respec-
tively, determined such that the second moment condition is
fulfilled by the Attard PDFs.12

We have determined earlier the viscosity of strong elec-
trolyte solutions consisting of equal-sized, monovalent ions,
from the simplified MCT-HIs method using both the MSA
and the Attard ion PDFs as input.30 Although the PDFs pre-
dicted by the two methods are noticeably different from each
other for nT > 0.5 M, the corresponding viscosity results re-
main practically the same for substantially larger concentra-
tions. Therefore, and for simplicity, only the Attard static in-
put is used in the present paper. Moreover, transport properties
results are presented only for solutions of monovalent ions of
equal diameter (restricted PM). While the MSA and Attard
PDFs inputs have been used in the literature also for divalent
ions,22, 29 it should be noted that for electrolyte solutions in-
cluding non-monovalent ions, an improved static input is ac-
tually required, which properly accounts for ion pairing and
nonlinear electrostatic screening tendencies.

B. Hydrodynamic functions input

In the following, we describe our treatment of the
solvent-mediated ion-ion HIs. Additional information is con-
tained in Appendix A.

Consider again an m-component PM system which has in
total

N =
m∑

γ=1

Nγ (21)

ions of equal hydrodynamic radius a = σ /2 and equal single-
ion diffusion coefficient D0, where Nγ is the number of
γ -type ions. The HIs between an ion j ∈ β whose center is
located at the position vector Rβ

j , and an ion i ∈ α at position
Rα

i , are described by the 3 × 3 N-particle translational hydro-
dynamic diffusivity tensors, Dαβ

ij (RN ), which depend on the
3N-dimensional configuration vector RN of instantaneous ion
positions. The tensor Dαβ

ij (RN )/ (kBT ) linearly relates the hy-
drodynamic force on ion j ∈ β to the resulting velocity change
of ion i ∈ α. It can be obtained, in principle, from solving
the Stokes equation describing quasi-stationary creeping flow,
with the hydrodynamic BCs specified on the surfaces of the N
ions.33, 34 Since this hydrodynamic problem cannot be solved
analytically, some approximations have to be made.

In the so-called pairwise-additivity (PA) approximation,
the Dαβ

ij (RN ) are approximated by the sum of two-sphere

hydrodynamic mobilities according to14, 35

Dαβ

ij (RN )

D0
= δ

αβ

ij

⎛⎝1 +
m∑

γ=1

Nγ∑ ′

l=1

a11
(
Rα

i − Rγ

l

)⎞⎠
+ (

1 − δ
αβ

ij

)
a12

(
Rα

i − Rγ

j

)
, (22)

where δ
αβ

ij is equal to one for α = β and i = j, and zero oth-
erwise. The prime in the double sum indicates that the (diver-
gent) self-terms l = i and γ = α are excluded. Since all ions
are assumed to be hydrodynamically identical, the hydrody-
namic tensor mobility functions a11 and a12 are the same for
all ion pairs. We have maintained here the component index
notation for Dαβ

ij , since ions of different components are sta-
tistically non-equivalent for different component valencies.

Because of the axial symmetry of the two-sphere prob-
lem, a11 and a12 can be decomposed into longitudinal and
transverse components according to

a11 (r) = x11 (r) r̂ r̂ + y11 (r) (1 − r̂ r̂) (23)

and

a12 (r) = x12 (r) r̂ r̂ + y12 (r) (1 − r̂ r̂) , (24)

where r̂ = r/r . Recursion relations for the series expansion
of the isotropic functions xij and yij in powers of 1/x = 2a/r,
and a lubrication correction for near-contact distances are pro-
vided by Jeffrey and Onishi.36 In our calculations of elec-
trolyte transport coefficients invoking the PA approximation
of the HIs, we use numerical tables for the xij and yij gener-
ated following the work of Jeffrey and Onishi.36

The near-field (NF) parts of the longitudinal and transver-
sal functions xij and yij, respectively, which are of O(1/x4) or
shorter-ranged, are defined for stick hydrodynamic BCs as

xNF
ij = xij (x) − xRP

ij
(x), (25)

with an analogous definition for the yNF
ij . Here, xRP

11 = 0,
yRP

11 = 0,

xRP
12 = 3

4x
− 1

8x3
(26)

and

yRP
12 = 3

8x
+ 1

16x3
. (27)

The tensor functions a11 and a12, with xij and yij approx-
imated by xRP

ij and yRP
ij , respectively, constitute the well-

known Rotne-Prager (RP) approximation of the hydrody-
namic diffusivity tensors,37 where only the O(1/x3) far-field
part of the HIs is retained. The RP approximation has been
used already in our simplified MCT-HIs calculations of the
electrolyte viscosity,30 and it is employed in the present pa-
per for most of the discussed results for conduction-diffusion
properties. The changes introduced in the transport properties
by using a RP-type approximation with mixed slip-stick or
permeable-sphere BCs are discussed in Sec. IV, also in rela-
tion to colloidal systems.

On first sight, the easy-to-implement RP approximation
appears to be cruder than the more elaborate PA approxima-
tion, since the latter accounts for the complete two-body HIs
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part, including lubrication. While for large colloidal particles
lubrication is certainly important, its consideration becomes
questionable for nano-sized (hydrated) ions which are not
very much larger than individual solvent molecules. More-
over, and different from the PA approximation, the RP ap-
proximation has the important feature of preserving, for all
physically allowed ion configurations, the positive definite-
ness of the exact 3N × 3N hydrodynamic diffusivity matrix
which has the exact Dαβ

ij as its entries, and of the associated
hydrodynamic functions. Since the RP approximation is de-
ducible from a minimal dissipation theorem, it can be used
to obtain upper bounds on the exact short-time diffusion and
sedimentation coefficients37, 38 (see Sec. IV). We will compare
our transport coefficient results with RP-HIs to those obtained
using PA-HIs, to elucidate the effect of the near-field HIs
contributions.

As we have explained in Paper I,85 the effect of the HIs on
the short-time dynamic correlations of the partial concentra-
tion fluctuations in an m-component PM system is described
by the m × m hydrodynamic function matrix, H(q). Accord-
ing to Eq. (I.35) of Paper I,85 the elements of this matrix can
be decomposed into self- and distinct parts, which we rewrite
here as

Hαβ(q) = δαβDS
α + Hd

αβ(q). (28)

Here, DS
α is the short-time self-diffusion coefficient of α-type

ions, and Hd
αβ(q) is the distinct hydrodynamic function part,

defined in Eqs. (I.36) and (I.37), respectively. The distinct part
depends on the modulus, q, of the scattering wavenumber q
with associated unit vector q̂ = q/q. Without HIs, H becomes
a diagonal matrix with D0 as its diagonal entries.

For the MSA and Attard static inputs of a m component
system of equal-size ions, total electroneutrality implies that
the short-time self-diffusion coefficients, DS

α , are all equal to
the short-time self-diffusion coefficient, DS

HS , of a monodis-
perse system of neutral hard spheres with total volume frac-
tion φT, independent of the component index. Moreover, on
the PA and MSA/Attard levels of approximation, the hydrody-
namic matrix function decouples into steric and electro-steric
parts according to

H(y) = DS Q + HNN (y)Pn + 1

z2
HZZ(y)P. (29)

Explicit expressions for the short-time self-diffusion co-
efficient DS, and the so-called number-number (NN) and
charge-charge (ZZ) global hydrodynamic functions HNN(y)
and HZZ(y), respectively, are derived in Appendix A. Expres-
sions are presented both on the RP hydrodynamic far-field
level, and in addition for the situation where two-body near-
field HIs are fully accounted for (PA approximation). Global
hydrodynamic functions on the RP level only have been dis-
cussed before30 in relation to the electrolyte viscosity.

In the simplified MCT-HIs based numerical results for
symmetric 1:1 electrolytes presented in this paper, the value
of the mean ion diameter has been taken as σ = a+ + a−,
where a+ and a− are the hydrodynamic radii of the cationic
and anionic particle species, respectively. The values of a+
and a− are determined from applying the Stokes-Einstein
relation, with perfect slip BC, to the reported experimental
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FIG. 2. Non-dimensionalized global hydrodynamic functions HNN(y) (a) and
HZZ(y) (b) of an aqueous symmetric 1:1 electrolyte (where z2 = 1) with ion
diameter σ = 4.58 Å, and Bjerrum length LB = 7.1 Å, characteristic of water
at room temperature. The total ion concentrations considered are nT = 0.4
M (red curves) and nT = 2 M (black curves). Dashed lines are results for the
HIs treated on the pairwise additive level using numerically precise two-body
hydrodynamic mobility tensors (PA approximation). Solid lines are results
obtained using the far-field RP-HIs approximation. Throughout this work,
the Attard ion pair distribution functions are used as the static input.

values for the self-diffusion coefficients of cations, D0
+, and

anions, D0
−, both measured for very low concentrations. To

be specific, in our numerical study of conduction-diffusion
and viscosity properties system parameters are used for aque-
ous NaCl electrolyte solutions at room temperature. An ex-
tended comparison with experimental data for other elec-
trolytes will be made in a separate communication, where
in addition the validity of the Walden rule and of general-
ized Stokes-Einstein and Nernst-Einstein relations is explored
using the MCT-HIs method. For Na+ and Cl− ions in wa-
ter at 25 ◦C, where η0 = 0.89 cP, the experimental values
are D0

+ = 1.33 × 10−5 cm2/s and D0
− = 2.03 × 10−5 cm2/s,

leading with a+ = 2.77Å and a− = 1.81Å to σ = 4.58Å for
the mean ion diameter.43 This diameter value is used as input
in most of the numerical results presented below.

Figure 2 displays results for the global hydrodynamic
functions HNN(y) and HZZ(y), respectively, calculated accord-
ing to Eqs. (A14) and (A15) with the HIs treated on the PA
and RP levels of approximation. In the RP approximation, the
NF contributions are disregarded. Two different values of the
total concentration, namely nT = 0.4 M (red curves) and nT

= 2 M (black curves) are considered. The inclusion of near-
field two-body HIs leads to a downshift of the hydrodynamic
function curves which is more pronounced for larger ion con-
centrations. Even for the largest considered concentration of
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2 M, the total ionic volume fraction, φT ≈ 0.06, is small
enough that three-body and higher-order HIs contributions
are comparatively small. On the RP level of HIs, the re-
duced hydrodynamic functions depicted in Fig. 2 asymptote
to the value one at large wavenumbers, for the reason that
DS

α is approximated, decently well actually for the considered
ion concentrations, by its infinite dilution value D0

α = D0.
Observe here the different scales in the ordinate axes of
Figs. 2(a) and 2(b).

III. CONDUCTION-DIFFUSION TRANSPORT
COEFFICIENTS

In this section, we derive simplified MCT-HIs expres-
sions for short-time and steady-state conduction-diffusion
properties of electrolyte mixtures consisting of equal-sized
ions. The ion-ion HIs are treated both on the RP and pairwise-
additive (PA) levels of approximation. Explicit numerical re-
sults are presented for an aqueous 1:1 electrolyte, and they are
compared with experimental data, and with the predictions by
the MCT-DDFT approach of Chandra et al.26–29

A. Partial mobilities

We start by summarizing salient expressions for the
steady-state partial mobilities derived in Paper I.85 These
expressions are used here in our simplified MCT-HIs cal-
culations of transport coefficients. The conduction-diffusion
transport properties are obtained as linear combinations of
steady-state partial mobilities, μL

αβ , forming the elements of
the symmetric and positive definite m × m mobility matrix,
μL, of a general m-component PM electrolyte. The partial
mobilities are the sum,

μL
αβ = μS

αβ + �μαβ, (30)

of a short-time linear response part given by

kBT μS
αβ = lim

q→0
Hαβ(q) ≡ Hαβ (31)

and the relaxation part (see Paper I44, 85),

kBT �μαβ = −([1 + mc,irr · H−1]−1 · mc,irr )αβ, (32)

where H is the m × m matrix with the zero-q limiting partial
hydrodynamic functions, Hαβ , as its elements. Moreover,

mc,irr = lim
q→0

∫ ∞

0
dt Mc,irr (q, t) (33)

is the zero wavenumber limit of the time-integrated (irre-
ducible) collective memory function matrix, Mc,irr (q, t), in-
troduced in Paper I.85 In the simplified MCT-HIs approach,
the time-integrated collective memory function matrix is ap-
proximated by (see Paper I85 for details)

m
c,irr
αβ = DS

αDS
β

6π2 (nαnβ)1/2

∫ ∞

0
dt

×
∫ ∞

0
dk k4{Fαβ(k, t)(C(k) · F(k, t) · C(k))αβ

−(C(k) · F(k, t))αβ(F(k, t) · C(k))αβ}. (34)

Here, F(k, t) is the symmetric m × m matrix of equilib-
rium partial dynamics structure factors, Fαβ(k, t), depend-
ing on the correlation time t and the wavenumber k, and
DS

α is the short-time self-diffusion coefficient of α-type ions.
Equation (34) generalizes the simplified MCT-HIs expression
for m

c,irr
αβ given in Paper I85 to the situation where, in addition

to the RP far-field HIs, also near-field hydrodynamic contribu-
tions to F(k, t) are accounted for. The latter lead to DS

α < D0
α .

As explained in Paper I85 (Eqs. (I.13) and (I.14)), the
steady-state partial mobilities are given by the sum,

μL
αβ = δαβ

DL
α

kBT
+ (

μL
αβ

)cross
, (35)

of a diagonal self-part proportional to the long-time self-
diffusion coefficient, DL

α , which quantifies the long-time
slope of the mean-squared displacement of α-type ions, and
a non-diagonal cross part, (μL

αβ)cross , whose diagonal matrix
elements are in general non-zero.

The electrophoretic mobility, μel
α , of α-type ions in a

weak external electric field can be expressed in terms of the
above partial mobilities as (see Eq. (I.15) in Paper I85)

μel
α = zαe

kBT
DL

α +
m∑

γ=1

(
nγ

nα

)1/2

zγ e
(
μL

αγ

)cross
, (36)

where the sum extends over all m ion components.

B. Short-time transport properties

We consider first the conduction-diffusion properties in
the short-time regime, where changes in the ion configuration
are very small. The m × m short-time mobility matrix part,
μS , for equal-sized ions and based on the MSA or Attard pair
correlation functions input, is readily deduced from Eq. (29)
as

kBT μS = DS Q + HNN Pn + 1

z2
HZZP , (37)

where DS = DS
HS . Here, HNN and HZZ are short-hand no-

tations for the zero-y limits of HNN(y) and HZZ(y), respec-
tively. The more demanding calculation of the relaxation
mobility matrix part, �μ, required as the second ingre-
dient to the steady-state mobility matrix, is addressed in
Subsection III C.

Note that to the matrix μS contribute, first, the short-
time self-diffusion coefficient DS

HS , second the (short-time)
sedimentation coefficient Ksed

HS of a suspension of equal-sized
neutral hard spheres (see Appendix C), related to HNN by40

Ksed
HS = HNN

D0
, (38)

and third the reduced short-time electrophoretic mobility of
α-type ions, μel,S

α . The third contribution for an arbitrary m
component electrolyte is related to HZZ by

μel,S
α = e

kBT

z2

xαzα

[P · H(0)]αα, (39)

which restates Eq. (I.38) for μel,S
α in terms of the projector

matrix P defined in Eq. (5).
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For equal-sized ions with equal single-ion diffusion co-
efficient D0, and pair correlations treated on the linear MSA
or Attard level, Eq. (29) applies, leading in combination with
Eq. (39) to

μel,S
α

μ
el,0
α

= HZZ

z2 D0
(40)

for the ratio of short-time and infinite dilution electrophoretic
mobilities. The electrophoretic mobility of α-type ions at infi-
nite dilution, as defined in Eq. (I.9), is μel,0

α = zαeD0/(kBT ).
Notice that the mobility ratio is independent of the component
index α for the equal-sized ions.

In the DFOF regime of low concentrations (nT � 0.01 M),
where monovalent ions are describable by the DH pair
correlation functions of pointlike ions, the short-time elec-
trophoretic mobilities in Eq. (40) reduce to the limiting law
result,

μel,S
α = μel,0

α − zαe

kBT
Dκ = zαe

kBT
(D0 − Dκ ), (41)

which has the characteristic square-root in nT (i.e., linear in κ)
dependence.5 Here, Dκ = kBT κ/(6πη0) introduced already
in Eq. (I.84), is a self-diffusion coefficient associated with a
spherical body of hydrodynamic radius equal to the Debye
length 1/κ . In performing the zero ion-radius limit a → 0 in
Eq. (40), the single-ion diffusion coefficient D0 is treated as
an independent and experimentally given quantity. Note that
Dκ � D0 applies in the low concentration regime where the
DFOF limiting law expressions are applicable.30

Figure 3 shows the short-time conduction-diffusion prop-
erties DS/D0, Ksed

HS and μel, S/μel, 0, of an aqueous symmetric
1:1 electrolyte, as functions of the total ion number concentra-
tion nT (lower horizontal scale) and total ion volume fraction
φT (upper scale). The Attard ionic PDFs are used as static in-
put in Eqs. (A14) and (A15). This is justifiable in the consid-
ered range φT � 0.06 of small ion volume fractions. The HIs

0.0 0.5 1.0 1.5 2.0

0.6

0.7

0.8

0.9

1.0
0.015 0.030 0.045 0.061

DS/D0

Ksed
HS

φT

nT [M]

limiting law μel,S/μel,0

FIG. 3. Calculated normalized short-time conduction-diffusion transport co-
efficients (as indicated) of an aqueous symmetric 1:1 electrolyte (where
z2 = 1) for system parameters as in Fig. 2. Solid lines are results based on
HIs treated on the far-field RP-HIs level. Dashed lines are results obtained
using the PA approximation. The upper horizontal scale is for the total ion
volume fraction φT. Dotted blue line: DFOF limiting law result for μel,S

α ac-
cording to Eq. (41), normalized by μel,0

α . Note that the ratio μel,S
α /μel,0

α is the
same for cations and anions.

are treated on the PA and far-field RP levels of approximation,
respectively. The slowing influence of the near-field two-body
part of the HIs included in the PA approximation leads to a
reduction of all three considered short-time transport proper-
ties. In particular, the short-time ion self-diffusion coefficient,
DS = DS

HS , of cations and anions in a 2 M solution is re-
duced in magnitude by about 10% below its infinite dilution
value D0.

At large concentrations, the PA approximation has the
tendency to overestimate the decrease in the reduced short-
time conduction-diffusion transport coefficients, which can be
attributed to the neglected three-body and higher-order near-
field HIs contributions. These contributions cause a weaken-
ing of the strength (but not of the range) of the HIs. Figure 3
illustrates for non-dilute electrolytes a pronounced deviation
of the common normalized short-time electrophoretic mo-
bility of cations and anions from the DFOF limiting law
result. The latter applies only if nT � 0.01 M.

C. Simplified MCT treatment with HIs

As discussed in Sec. IV C of Paper I,85 the simplified
mode-coupling theory method with hydrodynamic interac-
tions included (MCT-HIs) consists of using the short-time ap-
proximation, FS(q, t), of the dynamic structure factor matrix
F(q, t) as input in the MCT expression for the time-integrated
collective memory function matrix mc,irr in Eq. (34). This ap-
proximation is reasonably good for moderately concentrated
electrolyte solutions, and it leads to great analytic progress.
A related simplified MCT-HIs approach succeeded in the cal-
culation of the electrolyte viscosity, and the associated shear
relaxation function.30

In Smoluchowski dynamics, the short-time dynamic
structure factor matrix of an m-component electrolyte reads

FS(q, t) = e−q2 H(q)·S−1(q) t · S(q). (42)

This matrix can be written as the sum of m exponentially de-
caying normal modes where one mode, the so-called Debye
mode, is non-diffusive, meaning that its relaxation rate re-
mains non-zero in the limit q → 0. For equal-sized ions and
when the Attard or MSA PDFs are used as input, there are
only three different relaxation rates. Insertion of the orthog-
onal decompositions of H(y) according to Eq. (A11), and of
S(y) according to Eq. (9), into Eq. (42) leads to the normal
mode expansion result

FS(y, τ ) = e−λself (y)τ Q + e−λHS (y)τ SHS(y)Pn

+ e−λEL(y)τ SEL(y)P, (43)

for FS(q, t), expressed in terms of the reduced variables y and
τ . We have introduced here the reduced correlation time

τ = t/τσ , (44)

where

τσ = σ 2

DS
(45)

is the characteristic self-diffusion time over the distance σ .
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The diffusive mode reduced relaxation rates are

λself (y) = y2, (46)

and

λHS(y) = y2 1

DS

HNN (y)

SNN (y)
. (47)

The Debye mode relaxation rate is

λEL(y) = y2 1

DS

HZZ(y)

SZZ(y)
, (48)

where DS = DS
HS . Here, SNN (y) = Tr[Pn · S(y)] = SHS(y)

is the number-number static structure factor associated
with fluctuations in the total number density, and SZZ(y)
= z2 Tr[P · S(y)] = z2 SEL(y) is the static structure factor as-
sociated with fluctuations in the total charge density around its
mean value zero. Notice that λEL(y → 0) > 0, since SZZ(y)
= y2z2/(κσ )2 + O(y4). The mode with relaxation rate λself is
associated with the self-diffusion coefficient DS.

In the point-ion limit σ → 0, it follows with DS → D0

that the normal mode associated with the relaxation rate λHS

becomes part of the degenerate subspace of normal modes
characterized by λself(y), and that λEL(y)τ → λD(q)t. The ex-
pression for the Debye frequency, λD, of hydrodynamically
interacting point ions is given in Eq. (I.95).

1. Self-diffusion mobility part

We analyze here the long-time self-diffusion coefficient,
DL

α , quantifying the long-time slope of the mean-squared dis-
placement of α-type ions. According to Eq. (36), DL

α con-
tributes as the self-part to the electrophoretic mobility of
α-type ions. In the MCT-HIs approach based on the collec-
tive memory function matrix, DL

α is determined from mentally
singling out a few α-type ions to form a fictitious additional
component α*, taking subsequently the limit n∗

α → 0. As a
consistency check, we determine here DL

α alternatively using
the MCT expression for the self-intermediate scattering func-
tion of α-type ions. In this self-dynamics approach, DL

α can
be calculated starting from the exact relation45 (see Paper I85)

DL
α

DS
=

(
1 + �ζα

ζ S

)−1

, (49)

between DL
α and the self-correlation friction coefficient �ζ α .

The latter coefficient quantifies the electrolyte friction con-
tribution originating from the non-instantaneous relaxation
of the ion atmosphere formed around each α-type ion. It is
equal to the time-integrated (irreducible) self-memory func-
tion evaluated in the limit q → 0.45 Note that DS

α , and its asso-
ciated short-time friction coefficient ζ S

α = kBT /DS
α appearing

in Eq. (49), depend in general on the ion component index α.
However, for an electrolyte mixture of equal-sized ions with
static pair correlations described on the MSA or Attard level,
DS

α = DS = DS
HS is independent of α (see Appendix A), and

in consequence also ζ S
α = ζ S = kBT /DS

HS .
The substitution of FS(q, t) as an approximation for

F(q, t) into the MCT expression for �ζ α given in Eq. (I.133),
and with D0

α replaced by DS, leads to the analytic simplified

MCT-HIs result,

�ζα

ζ S
= �ζHS

ζ S
+ z2

α

�ζEL

ζ S
, (50)

for the relaxational self-friction coefficient. The coefficient
consists of a pure hard-sphere part,

�ζHS

ζ S
= φT

π3

∫ ∞

0
dy y2 (hHS(y))2

SNN (y) + HNN (y)/DS
(51)

and an electro-steric part

�ζEL

ζ S
= φT

π3
z2

∫ ∞

0
dy y2 (hEL(y))2

SEL(y) + HZZ(y)/(z2DS)
. (52)

In the limit σ → 0 for which hHS(y) → 0 and ζ S

→ ζ 0 = kBT/D0, only the electrostatic contribution to
the relaxational self-friction coefficient remains, giving rise
to the limiting law result for limσ → 0 �ζα/ζ S included in
Eq. (I.135). In this point-ion limit, and to linear order in κ ,
we obtain the DFOF limiting law result,7

DL
α

D0
= 1 −z2

α f p κLB, (53)

for the long-time self-diffusion coefficient, DL
α , of α-type ions

in a dilute solution of equal-sized ions with single-ion diffu-
sion coefficient D0. Here, f p = (2 − √

2)/6 is a numerical
factor characteristic of the electrostatic interactions.

Figure 4 displays our simplified MCT-HIs results for
the relaxational self-friction coefficient, �ζ , of a symmet-
ric aqueous 1:1 electrolyte together with its hard-sphere
and electro-steric constituents, as functions of the total ion
concentration (lower horizontal scale), and the reduced De-
bye screening parameter (upper horizontal scale). Since |zc|
= |za|, the long-time self-diffusion coefficient DL

α = DL is
for this symmetric situation the same for cations and anions.
Note further that for nT � 1 M, the screening length becomes

ΔζEL/ζS

ΔζHS/ζS

κσ

Δζ/ζS

nT [M]
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FIG. 4. Simplified MCT-HIs results for the reduced relaxational self-friction
coefficient, �ζ /ζ S, and its hard-sphere (HS) and electro-steric (EL) parts, of
an aqueous 1:1 electrolyte with parameters as in Fig. 2. Here, ζ S = kBT/DS

is the short-time self-friction coefficient of monovalent anions and cations.
Solid lines: Results based on HIs treated on the RP far-field level. Dashed
lines: Results based on HIs treated in PA approximation. Consistent with the
limiting law result for self-diffusion, the electro-steric self-friction contribu-
tion �ζEL dominates at small ion concentrations. Upper horizontal scale:
Ratio, κσ , of mean ion diameter σ and Debye screening length 1/κ .
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FIG. 5. Long-time self-diffusion coefficient, DL, of a symmetric aqueous 1:1
electrolyte with parameters as in Fig. 2, normalized by its zero concentra-
tion value D0, and plotted as a function of the total electrolyte concentration.
Solid black line: Simplified MCT result obtained using the RP-HIs approx-
imation both in �ζα and ζ S. Dashed black line: Corresponding result using
PA-HIs in �ζα and ζ S. The theoretical predictions are compared with the ex-
perimental (reduced) self-diffusion coefficient, DL

Na+/D0
Na+ , of sodium ions

(open squares) and the (reduced) self-diffusion coefficient, DL
Cl−/D0

Cl− , of
chloride ions (open circles) measured in water at 25 ◦C.46 Blue dotted line:
DFOF limiting law result according to Eq. (53).

smaller than the ion diameter. The electro-steric friction con-
tribution, �ζ EL, which at very low ion concentration increases
proportional to

√
nT , dominates the hard-sphere part �ζ HS

for smaller concentrations, consistent with the limiting law
transport coefficients behavior of strong electrolytes. The ra-
tio, �ζ /ζ S, of relaxation and short-time friction coefficients,
and in consequence also the ratio, DL/DS, of long-time and
short-time self-diffusion coefficients of cations and anions, is
practically determined by the far-field HIs part only. There is
just a slight increase of �ζ /ζ S (decrease of DL/DS) caused
by the near-field HIs contributions, visible in the figure at
larger concentrations only. In RP approximation, DS is ap-
proximated by its infinite dilution value D0, whereas DS < D0

is obtained in PA approximation (see also Fig. 3).
In Fig. 5, theoretical results are shown for the normal-

ized long-time self-diffusion coefficient, DL, of equal-sized
cations and anions of diameter σ = 4.58 Å in a symmetric
(monovalent) electrolyte. These results have been obtained
using Eq. (A9) for DS, the simplified MCT-HIs expression
for �ζ in Eq. (50), and Attard’s static PDFs input. The two-
body near-field HIs part incorporated in the PA approxima-
tion lowers, additionally to the RP far-field part, the value of
DL. This additional slowing originates mainly from the short-
time self-friction coefficient ζ S which in PA approximation
is larger than its infinite dilution value ζ 0. Figure 5 displays
also experimental data for the cationic and anionic long-time
self-diffusion coefficients of an aqueous NaCl solution.46 The
concentration dependence of DL predicted theoretically on the
basis of the RP treatment of the HIs nicely interpolates, for
the employed mean ion diameter σ = 4.58 Å, between the
measured diffusion coefficients of the smaller Na+ cations
(where σNa+ = 3.62 Å) and the larger Cl−anions (where σCl−

= 5.54 Å). This illustrates our general observation that the ex-
perimental conduction-diffusion and viscosity data for NaCl
are consistently well described if HIs are treated on the RP
level where, different from the more elaborate PA approxima-

tion, the positive definiteness of the hydrodynamic diffusivity
tensors is guaranteed.

While equal-sized cations and anions have been assumed
for simplicity, we point out that the MCT-HIs can be general-
ized to differently sized ions. The resulting expressions for the
transport properties are then more complicated, owing to the
appearance of cross terms which are absent if all ions are of
same size. A theoretical study of size-asymmetric electrolyte
solutions requires in addition a more elaborate static input for
the PDFs than the Attard or MSA solutions. Such a study will
be described in a future communication.

2. Cross correlation mobility part

So far, we have dealt with the short-time contributions
to the steady-state mobility matrix, μL, of an m-component
electrolyte mixture of equal-sized ions described by MSA or
Attard PDFs, and with the self-diffusion mobility part. We
investigate in the following the general form of the relaxation
part, �μL, of the mobility matrix which according to Eq. (32)
is related to the time-integrated, zero-q limit of the collec-
tive memory function matrix. An additional discussion of the
self- and cross-correlation contributions to �μL is given in
Appendix B.

In the simplified MCT-HIs approach for the memory
function matrix, we obtain the result

1

DS
m

c,irr
αβ =

(
�ζHS

ζ S
+ zαzβ

�ζEL

ζ S

)
Qαβ + M (mix) Pαβ,

(54)

where Qαβ = δαβ − Pn, αβ − Pαβ are the elements of the pro-
jector matrix defined in Eq. (12), and

M (mix) = φT

π3

∫ ∞

0
dy y2

× [SEL(y)hHS(y) − z2 SHS(y)hEL(y)]2

SEL(y)[HNN (y)/DS]+SHS(y)[HZZ(y)/(z2 DS)]
.

(55)

The superscript (mix) is a reminder that there are mixed
electro-steric and hard-sphere contributions in the integrand
of Eq. (55). The self-correlation part of the diagonal matrix
elements, mc,irr

αα , given by

1

DS

(
mc,irr

αα

)self = �ζα

ζ S
= DS

DL
α

− 1, (56)

is related to self-correlations in the velocity of an α-type ion.
As we have noted in relation to Eq. (49), the self-correlation
part follows from singling out a small fraction of α-type ions
considered to form a separate component α* with nα∗ → 0.
Velocity cross correlations between ions of the same or dif-
ferent components are related to the cross-correlation mem-
ory matrix part with elements

1

DS

(
m

c,irr
αβ

)cross = M (mix) Pαβ −
(

�ζHS

ζ S
+ zαzβ

�ζEL

ζ S

)
× (Pn,αβ + Pαβ). (57)
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In the point-ion limit, it is �ζ HS = 0 and M (mix) = z2�ζEL.
The time-integrated memory function matrix reduces then to
the limiting law expression

lim
σ→0

1

DS
m

c,irr
αβ = �ζEL

ζ 0
(δαβ − Pαβ)zαzβ, (58)

where the ratio �ζ EL/ζ 0 is given for point ions in Eq. (I.135).
To obtain �μ using Eq. (32), the inverse of the ma-

trix D = 1 + H−1 · mc,irr is required. An algebraic procedure
to obtain this inverse which in addition allows for system-
atically separating self- from cross-correlation contributions,
is sketched in Appendix B. This procedure is useful also in
dealing with electrolytes consisting of more than two ionic
species.

In the remainder of this section, we present semi-analytic
results for conduction-diffusion properties of binary elec-
trolytes composed of equal-size spheres.

D. Electrophoretic mobilities of a binary electrolyte

While the analytic determination of the short-time part,
μS = H/kBT , of the mobility matrix μL is rather straightfor-
ward even for a general m-component electrolyte solution, the
analysis of the relaxation part, �μ, is more cumbersome, as
it is noticed from Eq. (B9).

To make further analytic progress, in the remainder of
this section we restrict ourselves to a binary zc : za electrolyte
(c stands for cation, and a for anion) of equal-sized ions which
can be charge asymmetric in general. Total electroneutrality
implies for a binary electrolyte that Pn, αβ + Pαβ = δαβ , so
that Qαβ = 0 for α, β ∈ {a, c}. Thus, the time-integrated
2 × 2 memory function matrix of a binary electrolyte with
MSA or Attard PDFs is given by

mc,irr = DS M (mix) P, (59)

i.e., the time-integrated memory function matrix is propor-
tional to the 2 × 2 projector, P, on the subspace of charge-
density fluctuations. Using this result, μL is obtained as

kBT

D0
μL = Ksed

HS Pn + HZZ

z2 D0

HZZ

z2 DS

HZZ

z2 DS
+ M (mix)

P . (60)

In the (formal) limit of electrically neutral spheres, Eq. (60)
reduces to

kBT μL = D0 Ksed
HS Pn. (61)

This result is in accordance with the fact that the long-
time sedimentation coefficient of a homogeneous system of
monodisperse Brownian spheres, which is the long-time mean
sedimentation velocity divided by its infinite dilution value,
includes no slowing relaxation effect (i.e., memory matrix)
contribution, provided the HIs can be treated on the pair-
wise additive level of approximation.33, 40 Incidentally, the rel-
ative difference of the short-time and long-time sedimentation
velocities for a monodisperse neutral hard-sphere system is
quite small, amounting to less than 7%, even for large parti-
cle volume fractions up to φT � 0.45 where many-body HIs
are in general strong.49, 50 Further discussion on this subject is
given in Appendix C.

In the point-ion limit, Eq. (60) reduces to

kBT

D0
μL = Pn +

(
1 − Dκ

D0

)2

1 − Dκ

D0 + z2f eh(κ)κLB

P, (62)

with the function f eh(κ) given in Eq. (I.121). Using f eh(0)
= f p, and on realizing that for a binary electrolyte Pcc

= zc/(zc − za) = xa, Paa = 1 − Pcc, and Pac = −(xa xc)1/2,
the DFOF limiting law results for the mobility matrix con-
stituents in Eqs. (I.86), (I.98), and (I.99) are recovered.

The steady-state electrophoretic mobility of a binary
electrolyte follows straightforwardly from Eq. (60) as

μel
α = HZZ/(z2 DS)

HZZ/(z2 DS) + M (mix)
μel,S

α , (63)

with α ∈ {a, c}. The cross-correlation part of the elec-
trophoretic mobility is(

μel
α

)
cross = HZZ/(z2 DS)

HZZ/(z2 DS) + M (mix)
μel,S

α − zα e

kBT
DL

α ,

(64)
where μel,S

α is the short-time electrophoretic mobility given in
Eq. (40).

Note that according to Eq. (I.41),

μel
α = μel,0

α + �μel,S
α + �μel

α , (65)

the steady-state electrophoretic mobility is the sum of a
single-ion part, μel,0

α , a short-time part of purely hydrody-
namic origin,

�μel,S
α

μ
el,0
α

= −
(

1 − HZZ

z2 D0

)
, (66)

commonly referred to as the electrophoretic mobility part, and
a relaxation part given by

�μel
α

μ
el,0
α

= − M (mix)

M (mix) + HZZ/(z2 DS)

HZZ

z2 D0
. (67)

Both the electrophoretic and relaxation parts reduce the
magnitude of the electrophoretic ion mobility below its in-
finite dilution value. The relative strength of relaxation and
short-time electrophoretic mobility contributions is quantified
for a binary electrolyte by the ratio

�μel
α

�μ
el,S
α

= �μel,S
α + �μel

α

�μ
el,S
α

− 1

=
(

1 − HZZ

z2 D0

HZZ/(z2 DS)

M (mix)+HZZ/(z2 DS)

)/(
1− HZZ

z2 D0

)
−1,

(68)

which is independent of the component index α ∈ {a, c}.
The mobility ratio for a symmetric 1:1 electrolyte is plot-

ted in Fig. 6. Results based on RP-HIs and PA-HIs, respec-
tively, are compared to each other. The relaxation part, �μel

α ,
has been calculated using the simplified MCT-HIs method.
Its relative importance depends on the employed treatment
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FIG. 6. Ratio of the relaxation electrophoretic mobility part, �μel
α , deter-

mined by the MCT-HIs method, and the short-time electrophoretic mobility
part, �μel,S

α , of a 1:1 electrolyte with parameters as in Fig. 2, and using the
Attard static input. By symmetry, the ratio is the same for cations and an-
ions. Solid black line: Result obtained using the RP-HIs approximation both
in �μel,S

α and �μel
α . Dashed black: Result for PA-HIs used both for �μel,S

α

and �μel
α . Blue solid line: Mobility ratio for RP-HIs used in �μel,S

α , and HIs
disregarded in �μel

α .

of the HIs. The ratio is largest when the HIs are treated on
the RP level, for which in the depicted concentration range
�μel

α amounts, on average, to about one third of the short-
time electrophoretic mobility part. The comparison with the
MCT-predicted ratio where HIs are neglected in the relax-
ation part but maintained on the RP level for �μel,S

α (bottom
blue curve) shows that HIs significantly enlarge the relaxation
mobility part. The mobility ratio based on RP-HIs has a min-
imum at nT ≈ 0.1M, corresponding to κσ ≈ 0.34. With in-
creasing concentrations of values larger than the concentra-
tion at the minimum, the mobility ratio increases slowly. In
contrast, the mobility ratio based on PA-HIs employed in the
relaxation and short-time parts decreases monotonically with
increasing concentration. The significantly smaller mobility
ratio for PA-HIs is basically a consequence of the underes-
timation of DL in the PA approximation (see Fig. 5). For nT

→ 0, the mobility ratio converges to f pLB/a ≈ 0.3. This lim-
iting value is independent of the HIs.

In the point-ion limit, Eq. (63) reduces to

μel
α

μ
el,0
α

=
(
1 − Dκ

D0

)2(
1 − Dκ

D0

) + z2 f eh (κ) κLB

, (69)

which if expanded to first order in κ simplifies further to the
DFOF limiting law result,5

μel
α = μel,0

α − zαeκ

6πη0
− z2 f pκLBμel,0

α . (70)

The low-concentration relaxation effect contribution to the
electrophoretic mobility in Eq. (70) proportional to f p is de-
termined by Coulomb forces alone, independent of the HIs.

The DFOF limiting law self-correlation and cross-
correlation contributions to the total electrophoretic mobility
written in the form

μel
α = (

μel
α

)self + (
μel

α

)cross
(71)

are deduced from Eq. (70) by noting that z2 = −zcza and
−z2

α + z3zα/z2 = −z2 for α = {c, a}. This leads to the DFOF

expressions in Eqs. (I.102) and (I.103) for the self-correlation
and cross-correlation parts, respectively, in Eq. (71).

E. Molar conductivity of a binary electrolyte

The molar conductivity, �, follows immediately from its
definition for strong electrolytes given by Eq. (I.8), and here
rewritten

� =
m∑

α=1

ναλel
α = F

m∑
α=1

να zα μel
α , (72)

where

λel
α = zα μel

α F (73)

is the partial molar conductivity proportional to the stoichio-
metric coefficient, να , of α-type ions. Here, F = NAe is Fara-
day’s constant and NA is Avogadro’s number.

According to Eqs. (40) and (63), the dependence of the
steady-state electrophoretic mobility μel

α on the component
index α is due to the factor μel,0

α only. Therefore, we obtain

λel
α =

(
HZZ/(z2 DS)

HZZ/(z2 DS) + M (mix)

)
HZZ

D0z2
λel,0

α , (74)

for the steady-state partial molar conductivity, leading to

�

�0
=

(
HZZ/(z2 DS)

HZZ/(z2 DS) + M (mix)

)
�S

�0
, (75)

for the molar conductivity of a binary electrolyte solution nor-
malized by its infinite dilution value �0. The latter is given by
Eq. (72) with λel

α replaced by λel,0
α , and μel

α by μel,0
α .

The short-time partial molar conductivity, λel,S
α , is given

by Eq. (74), but with vanishing memory function part M(mix).
This implies

�S

�0
= HZZ

z2 D0
(76)

for the normalized short-time molar conductivity �S/�0

which, according to Eq. (40), is equal to the normalized short-
time electrophoretic mobility μel,S

α /μel,0
α . It is evident from

Eq. (75) that � < �S for nT > 0.
The concentration dependence of �S/�0 for a symmetric

1:1 electrolyte corresponds to the blue solid and blued dashed
lines depicted in Fig. 3. In accordance with a Brownian dy-
namics simulation study,51 the conductivity is significantly
decreased if HIs are taken into account. Note here that �S

= �0 if HIs are disregarded.
In the point-ion limit, Eq. (75) reduces to

�

�0
=

(
1 − Dκ

D0

)2(
1 − Dκ

D0

) + z2 f eh (κ) κLB

. (77)

By expanding Eq. (77) to first order in κ , the DFOF limiting
law result for the molar conductivity,5

� = �0 − z2f pκLB�0 −
(

m∑
α=1

να z2
α

)
eFκ

6πη0
, (78)

is recovered.
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When the electrophoretic mobility in Eq. (72) is approx-
imated by its self-correlation part (cf. Eq. (36)), the well-
known Nernst-Einstein (NE) relation,

� ≈ F2

RT

m∑
α=1

να z2
α DL

α , (79)

follows, where R = NAkB. For a symmetric binary electrolyte,
the NE relation has the compact form,

�

�0
≈ DL

D0
, (80)

i.e., the molar conductivity in this approximate relation is
taken to be proportional to the long-time self-diffusion co-
efficient, DL, of cations and anions. In assuming the validity
of the NE relation between the collective property � and the
self-dynamics property DL, dynamic cross-correlations in the
ion velocities are neglected which make the actual value of
�/�0 smaller than that of DL/D0. From comparing the DFOF
expression for DL in Eq. (53) with the DFOF electrophoretic
mobility in Eq. (70), one notices that the NE relation is
approximate already to first order in κ .

In Fig. 7, we compare our simplified MCT-HIs predic-
tions for the normalized conductivity of an aqueous 1:1 elec-
trolyte with that by Chandra et al.,26 as obtained from their
MCT-DDFT approach with the ion diameters of cations and
anions taken equal to the Pauling radius values of sodium
and chloride, respectively (green solid line). The MCT-HIs
conductivity curves with RP-HIs (black solid line) and PA-
HIs (black dashed line), respectively, are only moderately dif-
ferent from each other for the small mean ion diameter em-
ployed here. Neglecting the RP-HIs in the relaxation mobil-
ity contribution, while keeping them in the short-time (elec-
trophoretic) part, gives rise to a moderate increase in the molar
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FIG. 7. Concentration dependence of the normalized molar conductivity,
�/�0, of an aqueous 1:1 electrolyte solution at room temperature. For the
here depicted simplified MCT-HIs results, equal-sized cations and anions of
diameter σ = 2.82 Å have been assumed. This value is very close to the sum
of the Pauling ionic radii of Na+ (1.96 Å) and Cl− (3.62 Å) used by Chandra
et al. in their two-species MCT-DDFT conductivity prediction (green curve,
reproduced from Fig. 1(b) in Chandra et al.26). Black solid curve: Simplified
MCT-HIs result using RP-HIs in the relaxation and short-time parts. Black
dashed curve: Simplified MCT-HIs result using PA-HIs in the relaxation and
short-time parts. Blue solid line: MCT-HIs result using RP-HIs for in the
short-time conductivity part �S only. Dotted blue line: DFOF limiting law
result according to Eq. (78), specialized to monovalent ions. For all theoreti-
cal results shown in the figure, D0 is determined from D0 = kBT/(3πη0σ ).
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FIG. 8. Comparison of theoretical conductivity predictions with experimen-
tal values for the molar conductivity of NaCl in water at T = 25 ◦C.52 (a)
Simplified MCT-HIs prediction using σ = 2.82 Å. Black line: MCT-HIs pre-
diction for RP-HIs used both in �μel,S

α and �μel
α . Dashed black line: MCT-

HIs prediction for PA-HIs used both in �μel,S
α and �μel

α . Green line: MCT-
DDFT result by Chandra et al.,26 where HIs are disregarded in the relaxation
conductivity part. Dotted blue line: DFOF limiting law result according to
Eq. (78). (b) MCT-HIs molar conductivity predictions using now the hydro-
dynamic mean ion diameter σ = 4.58 Å, consistent with the underlying PM
model of hydrated electrolyte ions. Line code for the solid-black, dashed-
black, and dotted-blue curves as in (a). The effect of mixed slip-stick BCs
in the dipolar HIs treatment on the molar conductivity is illustrated for the
perfect slip BC (ξ = 1/3, solid red line), and for the slip parameter ξ = 1/7
corresponding to the slip length lp = a/4 (red dashed-dotted line).

conductivity (blue solid curve). While similar in the concen-
tration dependence, the MCT-HIs conductivity curves are lo-
cated above the MCT-DDFT conductivity curve obtained by
Chandra et al.26 In their MCT-DDFT approach, the influence
of HIs on the ion atmosphere relaxation contribution to the
conductivity has been disregarded.

In Fig. 8(a), the theoretical predictions for the molar con-
ductivity are compared, on an absolute scale, with experi-
mental data for an aqueous NaCl solution.52 The theoretical
curves for � have been obtained from multiplying the calcu-
lated conductivity ratio, �/�0, with the experimental values
for the molar conductivity of an ultra-dilute sodium-chloride
solution.52 The simplified MCT-HIs curves for � are located
somewhat above the experimental data points, whereas the
MCT-DDFT curve by Chandra et al.26 slightly underesti-
mates the experimental data. We stress, however, that the di-
ameter σ = 2.82 Å is employed for the MCT-HIs results in
Fig. 8(a) solely for the comparison with the conductivity re-
sult by Chandra et al.26 where the Pauling ion diameters have
been used. In fact, to be consistent with the PM underlying
the MCT-HIs scheme, the mean diameter σ = 4.58 Å based
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on the sizes of the hydrated Na+and Cl+ ions should be used
instead.53 This latter diameter value has been employed in
Figs. 2–6.

The comparison of the MCT-HIs results with the ex-
perimental molar conductivity data for NaCl in water, using
σ = 4.58 Å for the mean ion diameter, is given in Fig. 8(b).
The MCT-HIs curve for RP-HIs is in good overall agree-
ment with the experimental data, although the experimental
values are underestimated to some extent for larger concen-
trations. The experimental data are strongly underestimated,
however, if the HIs are treated on the PA-HIs level. Therefore,
the RP approximation should be used in the simplified MCT-
HIs approach. While the MCT-DDFT conductivity curve for
σ = 4.58 Å is not given in the literature, this curve is expected
to strongly underestimate the experimental conductivity data,
owing to the fact that the total ion volume fraction in Fig. 8(b)
is more than four times larger than that in Fig. 8(a).

The comparison of the MCT-HIs molar conductivity
curve in Fig. 8(b) (black solid line) with the corresponding
MCT-HIs result for DL/D0 in Fig. 5 illustrates that the us-
age of the NE relation in Eq. (80) can result in a strong
overestimation of the molar conductivity. As pointed out ear-
lier, this overestimation is due to the neglected dynamic cross
correlations.

IV. EFFECTS OF HYDRODYNAMIC
BOUNDARY CONDITIONS

For the hydrodynamic diffusivity tensors used so far, the
stick hydrodynamic BC on the PM ion surfaces has been as-
sumed. The MCT-HIs method is straightforwardly general-
ized to Navier mixed slip-stick BCs, corresponding to weaker
HIs. In the following, we investigate the implications for the
molar conductivity and electrolyte viscosity when mixed slip-
stick BCs are used. These BCs allow for mimicking approx-
imately, on a continuum level of description, the hydrody-
namic influence of ion hydration shells. Explicit results for
conduction-diffusion transport properties, and the electrolyte
viscosity, are discussed in particular for the two extremal
cases of stick and perfect slip BCs. In the latter case, the tan-
gential hydrodynamic shear stress on the ion surfaces is taken
to be zero. Regarding the sedimentation coefficient, in Ap-
pendix C we analyze, in addition, the implications of a pos-
sible solvent permeability of the hydrated ions. The HIs are
treated in the following on the dipolar far-field level, i.e., the
RP approximation with stick BC on the ion spheres is gener-
alized to Navier mixed slip-stick hydrodynamic BCs (in Sub-
sections IV A and IV B). In Appendix C, the sedimentation
coefficient of an electrolyte solution of solvent-permeable,
equal-sized ions is calculated. Therein the ions are described
as uniformly permeable spheres characterized by a constant
Darcy solvent permeability.

A. Far-field HIs up to dipolar order

We consider again a mixture of PM ions of identical
hydrodynamic radius a = σ /2 using now, however, general
mixed slip-stick hydrodynamic BCs.

The translational diffusion coefficient, D0(ξ ), of an iso-
lated sphere with mixed slip-stick surface BCs characterized
by the slip parameter ξ ∈ {0, 1/3}, is given by54

D0(ξ ) = kBT

6πη0aP
(m)
1 (ξ )

, (81)

where

P
(m)
1 (ξ ) = 1 − ξ. (82)

For ξ = 0, the stick BC case is recovered for which D0(ξ
= 0) = D0. The perfect slip BC corresponds to ξ = 1/3 where
P1(1/3) = 2/3 and D0(ξ = 1/3) = 3D0/2. No tangential hydro-
dynamic stress, and thus no hydrodynamic torque is exerted
by the surrounding fluid on a perfect slip sphere. For values of
ξ in between 0 and 1/3, there is a non-zero tangential slip ve-
locity of the fluid relative to particle surface points, which is
proportional to the local tangential hydrodynamic stress. The
slip length, lslip, associated with the slip parameter is given by

lslip

a
= ξ

1 − 3ξ
. (83)

It is zero (infinite) for stick (perfect slip) BC (see Fig. 1).
The far-field form of the distinct diffusivity tensor, Dαβ

12 ,
of equal-sized ions i and j with mixed slip-stick BC is to
O(1/x3) in the reduced distance x given by55, 56

Dαβ

12

(
Rα

i − Rβ

j2 ; ξ
) = D0(ξ )T(m)

(
Rα

i − Rβ

j ; ξ
)
, (84)

where

T(m)(r ; ξ ) = 3a

4r
P

(m)
1 (ξ )(1 + r̂ r̂)

+ 1

2

(a

r

)3
P

(m)
2 (ξ )(1 − 3 r̂ r̂) (85)

is basically the generalized Rotne-Prager type tensor for
mixed slip-stick BCs, and

P
(m)
2 (ξ ) = 1 − 3ξ. (86)

We note here that Dαβ

11 = D0(ξ )1 + O(1/x4) which implies
that DS(ξ ) = D0(ξ ) holds sway for the short-time self-
diffusion coefficient calculated to dipolar order in the HIs.

In the point-particle limit, or if the perfect slip BC
is assumed, D0(ξ )T(m) (r ; ξ ) reduces to kBT TOs (r) where
TOs (r) is the Oseen tensor describing the fluid velocity re-
sponse due to a unit point force exerted at r = 0 to an infi-
nite and unbounded fluid.34 The dipolar contribution to T(m)

is zero for the perfect slip BC, so that in this case no curva-
ture contribution arises in presence of nonlinear fluid flow. For
the stick BC, the Rotne-Prager tensor, TRP (r), of equal-sized
spheres37 is recovered from Eq. (85). The explicit expression
of this tensor is given in Eq. (I.74).

The hydrodynamic function matrix, H(y), for equal-sized
ions with mixed slip-stick BCs is formally still given by
Eqs. (A11)–(A13). However, to dipolar order in the HIs, the
global hydrodynamic functions are now

HNN (y; ξ ) /D0(ξ ) = 1 + φT h
d,(m)
HS (y ; ξ ) (87)

and
HZZ (y; ξ )

z2D0(ξ )
= 1 + φT h

d,(m)
EL (y ; ξ ) , (88)
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with the distinct hydrodynamic function contributions

hd,(m)
HS (y ; ξ ) = 3 [P2(ξ ) − 6P1(ξ )]

j1(y)

y

+ 18
∫ ∞

1
dx x K (m)(y, x ; ξ )hHS(x)

= P2(ξ ) + 18
∫ ∞

0
dx x K (m)(y, x ; ξ )hHS(x)

(89)

and

hd,(m)
EL (y ; ξ ) = 18

∫ ∞

0
dx x K (m)(y, x ; ξ )hEL(x). (90)

The mixed slip-stick hydrodynamic kernel is here

K (m)(y, x ; ξ ) = P1(ξ )

(
j0(y x) − j1(y x)

y x

)
+ P2(ξ )

6

(
j2(y x)

x2

)
. (91)

In the zero slip case ξ = 0, the RP-HIs forms of HNN and HZZ

are recovered from these expressions.
Next, consider uniformly permeable spheres of radius

a (with associated quantities labeled by the superscript (p)),
where the interior average fluid flow is described by the
Brinkman-Debye-Bueche equation.57 The parameter charac-
terizing to what extent a sphere is solvent permeable is the
ratio, χ , of particle radius and hydrodynamic penetration
depth. The latter is equal to the square-root of the Darcy
permeability.

The diffusion coefficient, D0(χ ), of an isolated and uni-
formly permeable sphere follows from Eq. (81) by replacing
P

(m)
1 (ξ ) by the function

P
(p)
1 (χ ) = 2χ2[1 − tanh(χ )/χ ]

2χ2 + 3[1 − tanh(χ )/χ ]
. (92)

Likewise, the O(1/x3) dipolar form of the distinct diffusivity
tensor of uniformly permeable spheres, D0(χ )T(p) (r, χ ), is
given by Eqs. (84) and (85) with P

(m)
1 (ξ ) replaced by P

(p)
1 (χ ),

and P
(m)
2 (ξ ) by57–59

P
(p)
2 (χ ) = 6(χ2 − 2)[χ − tanh(χ )] − 4χ3

2χ3 + 3[χ − tanh(χ )]
. (93)

In the limit χ → ∞ of zero hydrodynamic penetra-
tion depth, it is P

(p)
1 (∞) = 1 = P

(p)
2 (∞), and the hydrody-

namic functions of impermeable spheres with stick BC are
recovered.

For a system of equally sized uniformly permeable
spheres, expressions for the global hydrodynamic functions
HNN and HZZ are obtained completely analogous to Eqs. (87)–
(91), simply from replacing P

(m)
i (ξ ) by P

(p)
i (χ ) for i = 1, 2.

Transport properties of a concentrated permeable hard-sphere
system have been intensely studied in the past years,60, 61 since
this system serves as a minimal model for permeable colloidal
particle systems such as core-shell particles consisting of a
dry core and a permeable shell (e.g., a polymer brush).62, 63 In
typical core-shell colloidal systems, the inverse reduced per-
meability parameter is in the range62 χ � 20. Appendix C

presents results for the sedimentation coefficient of a disper-
sion of monodisperse, solvent-permeable (ion) spheres, and
of a dispersion of mixed stick-slip BC spheres.

B. Viscosity and conductivity: Mixed slip-stick
Navier BCs

We discuss first the implications for the short-time molar
conductivity on using mixed slip-stick BCs. In generalizing
Eq. (76) to mixed slip-stick BCs, �S is given by

�S(ξ )

�0(ξ )
= HZZ (0; ξ )

z2 D0(ξ )
. (94)

The normalized conductivity, �S(ξ )/�0(ξ ), is largest for the
perfect slip BC where the tangential hydrodynamic sur-
face shear stress is zero, and smallest for stick BC. From
Eqs. (87)–(91) and using D0, stick = (2/3) × D0, slip, the ana-
lytic expression

1 −
(

�S

�0

)slip

= 2

3

[
1 −

(
�S

�0

)stick
]

, (95)

is obtained relating the two limiting short-time conduc-
tivities. This relation makes it transparent that (�S/�0)slip

> (�S/�0)stick.
A corresponding analytic relation between the steady-

state molar conductivities for stick and perfect slip BCs is
not known. The steady-state conductivity is smaller than its
short-time part, owing to the slowing effect of the ion cloud
relaxation. This exemplifies a general rule valid in Smolu-
chowski dynamics which tells that a steady-state (long-time)
linear transport coefficient is smaller than its short-time part,
since the former is related to the time integral of an associated
time autocorrelation function decaying strictly monotonically
in Smoluchowski dynamics (see Paper I85). The steady-state
and short-time coefficients are equal in the infinite dilution
limit only.

The MCT-HIs predictions for the molar conductivity with
mixed-slip BCs, and HIs treated on the dipolar far-field level,
are included in Fig. 7(b). While the conductivity prediction
for stick BC is in decently good agreement with the experi-
mental data of NaCl in water in particular at lower concen-
trations, a very good fit of the experimental data is achieved
using the slip parameter ξ = 1/7. This value corresponds, ac-
cording to Eq. (83), to the slip length lslip = a/4 comparable
to the average thickness of the ion hydration layers.

We discuss next the effect on the electrolyte viscosity of
using mixed slip-stick BCs. The viscosity is the sum,

η = η0 + �ηexc, (96)

of the solvent viscosity η0 and the excess part �ηexc. The lat-
ter is determined by the ion-ion direct and hydrodynamic in-
teractions. The excess viscosity part in turn consists of the
high-frequency, i.e., short-time, contribution, �η∞, and the
contribution �η arising from the relaxation of the ion clouds
under weak solution shear flow, i.e.,

�ηexc = �η∞ + �η. (97)
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The high-frequency contribution, �η∞, is of purely hydrody-
namic origin. It vanishes for point particles or when HIs are
disregarded.30

In previous work,30 we have derived a simplified MCT-
HIs expression for the steady-state electrolyte viscosity, η,
of a mixture of equal-sized ions. Similar to the correspond-
ing behavior of the short-time ionic self-diffusion coefficient,
for equal-sized ions with pairwise additive HIs and the static
PDFs treated on the MSA or Attard level, �η∞ is equal to
the high-frequency viscosity contribution, �ηHS

∞ , of a neutral
hard-sphere dispersion at volume fraction φT. This equality
is not valid for solutions of differently sized ions. For hard
spheres with stick hydrodynamic BC is

�ηHS,stick
∞
η0

= 5

2
φT (1 + φT ) + 60φ2

T

∫ ∞

1
dx x2 gHS(x)J (x)

= 5

2
φT + 5.0023φ2

T + O
(
φ3

T

)
. (98)

Here, J(x) is the two-body hydrodynamic shear mobility func-
tion for stick BC, decaying like O(1/x6) at large x, and gHS(x)
is the hard-sphere PDF. The second numerical equality in
Eq. (98) has been obtained using a numerical table for J(x).36

It agrees with an earlier second-order virial numerical result
by Cichocki et al.64 where a different method was used. For
the ion concentrations considered in the present work where
φT � 0.06 (see upper horizontal scale in Fig. 3), Eq. (98) is a
good description40 for �ηHS,stick

∞ .
The corresponding second-order virial expansion expres-

sion for the high-frequency viscosity contribution of hard
spheres with mixed slip-stick BCs is65

�η
HS,(m)
∞ (ξ )

η0
= [η](m)φT + k

(m)
H ([η](m))2φ2

T + O(φ3
T ), (99)

where

[η](m) = 5

2
· 1 − ξ

1 + 2ξ
(100)

is the single-sphere intrinsic viscosity, and k
(m)
H is the two-

particle Huggins coefficient for mixed slip-stick BCs spheres.
The Huggins coefficient has been numerically determined to
high accuracy as a function of ξ by Cichocki and Felderhof.65

Their result is well parameterized by the fifth-order
polynomial

k
(m)
H ([η](m))2 = 5 − 12.8694 s + 21.4608 s2

− 25.4771 s3 + 17.4982 s4 − 4.90946 s5,

(101)

in s = 3 ξ , which we have obtained from a least-square fit of
the numerical data by Cichocki and Felderhof.65 For stick BC
where [η](m)(ξ = 0) = 5/2, Eq. (99) reduces to Eq. (98). For
perfect slip BC is [η](m)(ξ = 1/3) = 1, and the second-order
virial result for hydrodynamically perfectly slip spheres,65

�η
HS,slip
∞
η0

= φT + 0.703φ2
T + O

(
φ3

T

)
, (102)

is recovered from Eq. (99). Even for perfect slip spheres, the
intrinsic viscosity value ([η]slip = 1) is non-zero, owing to the
fact that fluid cannot flow through an impermeable particle.

For equal-sized ions described using the Attard or MSA
PDFs, the shear relaxation viscosity contribution in the sim-
plified MCT-HIs approximation is given by the sum,30

�η = �ηHS + �ηEL, (103)

of a pure hard-sphere and an electrosteric part. For mixed slip-
stick BCs, the simplified MCT-HIs expressions for the two
parts are

�η
(m)
HS

η0
= P

(m)
1 (ξ )

40π

∫ ∞

0
dy

y2

1 + φT h
d,(m)
HS (y ; ξ )

(SHS(y)′)2

SHS(y)
(104)

and

�η
(m)
EL

η0
= P

(m)
1 (ξ )

40π

∫ ∞

0
dy

y2

1 + φT z2 h
d,(m)
EL (y ; ξ )

(SEL(y)′)2

SEL(y)
.

(105)
Equations (104) and (105) generalize the MCT-HIs vis-

cosity expressions we have derived before30 for dipolar far-
field HIs and stick BC, to the more general case of mixed slip-
stick BCs. If the HIs in the dynamic input matrix, FS(q, t), to
the MCT shear relaxation function �η(t) of form discussed
in our previous work,30 are treated on the PA level of approx-
imation with stick BC, the denominator, 1 + φT h

d,(m)
Y (y), in

Eqs. (104) and (105) must be replaced by HNN(y)/D0 for Y
= HS, and HZZ(y)/D0 for Y = EL, using D0 = D0(ξ = 0).

In Fig. 9, the simplified MCT-HIs predictions by
Eqs. (99)–(105) for the relative excess viscosity, (η − η0)/η0,
of an aqueous symmetric 1:1 electrolyte are compared with
experimental data66 for NaCl in water at 25 ◦C.67 In Fig. 9(a),
the MCT-HIs results have been obtained using σ = 2.82 Å,
which is the (mean) Pauling ion diameter value employed by
Chandra and Bagchi28 in their MCT-DDFT viscosity result
represented by the green thick line segment. In both theoret-
ical methods, the Attard PDFs of equal-sized ions have been
used. However, different from our MCT-HIs approach, HIs
are disregarded in the MCT-DDFT approach both in the shear
relaxation and high-frequency viscosity contributions. Thus,
�η∞ is disregarded in particular. However, as we have shown
in Ref. 30, �η∞ contributes in fact strongly to η.

The theoretical predictions for �ηexc in Fig. 9(a) by
both methods severely underestimate the experimental data.
This underestimation is more pronounced for the MCT-DFFT
method. Chandra and Bagchi28 attribute this to the disre-
garded ion-specific effects in their approach. However, ac-
cording to our simplified MCT-HIs analysis where �η∞ and
the influence of the HIs on �η are accounted for, the experi-
mental viscosity is in fact well reproduced for stick BC pro-
vided that instead of σ = 2.82 Å, the physically meaningful
mean diameter σ = 4.58 Å of the hydrated Na+ and Cl− ions
in water is used (see Fig. 9(b)). Using the PA-HIs approx-
imation instead of the RP-HIs approximation in the relax-
ation contributions, leads to a small viscosity increase only.
The experimental viscosity data are underestimated when the
non-zero slip parameter ξ = 1/7, corresponding to lp = a/4,
is used. The viscosity is thus seen to be more sensitive to
changes in the hydrodynamic surface slip than the molar
conductivity.
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FIG. 9. Excess viscosity, �ηexc, in units of the solvent viscosity η0, as func-
tion of the total ion concentration. Experimental data (open circles) for NaCl
in water at T = 25 ◦C66 are compared to theoretical predictions for an aque-
ous 1:1 electrolyte consisting of equal-sized cations and anions. (a) Simpli-
fied MCT-HIs (black solid line) and MCT-DDFT (green line segment) vis-
cosity results.28 The Attard PDFs for σ = 2.82 Å are used in both methods
In the MCT-HIs result, the RP-HIs description is used for �η, and Eq. (98)
for �η∞. (b) MCT-HIs viscosity results as in (a), but now using the (mean)
ion diameter σ = 4.58 Å consistent with the employed PM description. Solid
black (red) line: Excess viscosity using dipolar far-field HIs and stick (per-
fect slip) BC for the shear relaxation part �η, and Eq. (98) (Eqs. (99)–(101))
for �η∞. Dashed black line: MCT-HIs result using PA-HIs for �η. Dashed-
dotted red line: MCT-HIs result for mixed slip-stick spheres of slip length
lslip = a/4, using dipolar HIs for �η and Eqs. (99)–(101) for �η∞. Shown is
also the limiting law result (dotted curve).30

V. SUMMARY AND CONCLUSIONS

On the basis of a simplified treatment of the multicom-
ponent MCT method for electrolyte solutions with HIs de-
veloped in Paper I,85 we have derived semi-analytic expres-
sions for linear conduction-diffusion properties of strong elec-
trolyte solutions consisting of equal-sized ions. The ions are
treated on the PM-Smoluchowski dynamics level as charged
Brownian spheres embedded in a Newtonian continuous fluid.
The simplified MCT-HIs conduction-diffusion and viscosity
expressions evaluated in this work can be straightforwardly
implemented on a personal computer, allowing for a fast cal-
culation of transport properties over a vast parameter range.
The numerical simplicity of the simplified MCT-HIs method
makes it useful also to experimentalists. An important advan-
tage of the method is that one can study individually the ef-
fects of the HIs on the short-time and relaxation parts of the
transport coefficients, for different hydrodynamic BCs and
ion-sphere hydrodynamic models. In the point-ion limit, the
conduction-diffusion transport coefficients with HIs as de-
rived in Paper I85 are recovered. For very low ion concen-

trations where HIs have no influence on the ion cloud relax-
ation, the DFOF low-concentration limiting law expressions
for conduction-diffusion coefficients and the viscosity are
reproduced.

The only required input are the equilibrium PDFs of
the PM. The Attard PDFs for monovalent ions have been
used throughout for analytic simplicity. We have checked that
transport coefficient results based on the more elaborate MSA
PDFs are numerically close to those based on the Attard input,
up to the largest considered concentration.

We have shown that both the short-time and the relax-
ation part of the transport coefficients are considerably influ-
enced by the HIs. The MCT-HIs results for stick BC, and HIs
treated on the RP dipolar far-field level, have been compared
to results based on the PA approximation. Provided the av-
erage diameter σ = 4.58 Å of hydrated Na+ and Cl− ions in
water is used, consistent with the underlying continuum me-
chanics picture of the solvent, the experimental values for the
molar conductivity and viscosity of aqueous NaCl solutions
are overall well reproduced for stick hydrodynamic surface
boundary condition, without any adjustable parameter. If one
allows for some hydrodynamic slip (i.e., ξ = 1/7 correspond-
ing to lslip = a/4), the agreement between the MCT-HIs pre-
dicted molar conductivity and the experimental data becomes
even excellent. This finding is consistent with the existence of
ion hydration layers expected to cause some hydrodynamic
slip, by an amount depending on the molecular structure and
width of the hydration shell, and for thicker shells also on the
form of the local flow field near the ions.

A key observation in this study is that the invocation
of RP-HIs with stick BC in the simplified MCT-HIs method
leads to results which are in consistently good overall agree-
ment with the experimentally determined collective transport
properties of aqueous NaCl solutions. This observation is not
fortuitous since for small electrolyte ions, and in the consid-
ered volume fraction range, the far-field HIs part is expected
to contribute most strongly. Lubrication interactions, which
are included in the more elaborate PA treatment of the HIs, are
likely to be of no relevance for the nano-sized (hydrated) ions,
different from colloidal particles which are typically several
hundred nanometers in size. Moreover, the PA-based treat-
ment of the HIs tends to overestimate the slowing effect of
near-field HIs on the ion conductivity and electrophoretic mo-
bilities, and on the (short-time) self-diffusion and sedimenta-
tion coefficients.

The simplified MCT-HIs method presented in a self-
contained way in Paper I85 and in the present paper, can be
extended in several ways some of which we are currently ex-
ploring. We are in the process of studying the influence of
HIs on the chemical (mutual) diffusion of electrolyte ions
in weak concentration gradients (see also Refs. 70–73), and
the performance of generalized Stokes-Einstein and Nernst-
Einstein relations between conduction-diffusion properties
and the electrolyte viscosity. Moreover, we are currently ex-
tending the MCT-HIs method to size-asymmetric electrolytes,
and electrolytes including non-monovalent ion species. These
extensions require improved PM pair correlation functions
as input which comply with the Stillinger-Lovett moment
conditions,74, 75 and account in addition for ion-pairing and
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nonlinear screening tendencies. For this purpose, MC com-
puter simulations of the PM PDFs based on the Ewald76 and
Wolf77 methods are under way.78 These simulation tools can
be applied also to strongly asymmetric electrolytes.79, 80

Note that for asymmetric electrolytes, the convenient or-
thogonality properties in Eqs. (8) and (9), which are specific
to the linear MSA and Attard PDFs of equal-sized ions, do
not apply any more. Consequently, additional cross contribu-
tions to the transport coefficients must be considered. These
contributions invoke in particular the global dynamic struc-
ture factor FNZ(q, t), describing dynamic cross correlations
between fluctuations in the total number and charge densi-
ties (cf. Paper I30, 85). If large ion concentrations are consid-
ered, a self-consistent extension of the simplified MCT-HIs
can be developed as outlined in Paper I,85 which accounts for
HIs also in the MCT vertex function contributions to the col-
lective memory function matrix. Furthermore, the MCT-HIs
approach can be generalized, with some effort, to frequency-
dependent transport properties.

Finally, the MCT-HIs method can be generalized to
strongly size and charge asymmetric polyion solutions where
the polyions can be treated as a colloidal macroion species.81

Examples in case are salty solutions of globular proteins such
as apoferritin82 and bovine serum albumin.83 For these sys-
tems, a first-order expansion of the macroion transport coef-
ficients in terms of the small ratio of macroion and salt ion
diffusion coefficients is quite useful. Such an expansion was
used by McPhie and Nägele84 in their study of the ion cloud
relaxation effect on the long-time self- and tracer diffusion
coefficients of charged colloidal particles. Work in this direc-
tion, but now for collective transport properties, is in progress.
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APPENDIX A: HYDRODYNAMIC FUNCTIONS
OF EQUAL-SIZE ION SOLUTIONS

The short-time self-diffusion coefficients and distinct
partial hydrodynamic functions, for HIs treated on the PA
level, follow from inserting Eq. (22) into Eqs. (I.36) and
(I.37). The result is

DS
α

D0
= 1 + 8 φT

∫ ∞

1
dx x2

⎛⎝ m∑
γ=1

xγ gαγ (x)

⎞⎠ KS,NF (x),

(A1)
and

Hd
αβ(y) = H

d,RP
αβ (y) + H

d,NF
αβ , (A2)

where in Eq. (A1) we have identified the hydrodynamic radius
with the excluded volume radius of the equal-sized ions. The
distinct partial hydrodynamic function is the sum of the RP

far-field part,

H
d,RP
αβ (y)

D0
= −15φT

(
xαxβ

)1/2 j1(y)

y

+ 18φT (xαxβ)1/2
∫ ∞

1
dx x Kd,RP (y, x)hαβ (x)

(A3)

and the near-field part

H
d,NF
αβ (y)

D0
= 24φT

(
xαxβ

)1/2
∫ ∞

1
dx x2 Kd,NF (y, x) gαβ (x).

(A4)

We have introduced here the self- and distinct hydrodynamic
kernel functions for stick BC, given by

KS,NF (x) = xNF
11 (x) + 2 yNF

11 (x), (A5)

Kd,RP (y, x) = j0(yx) − j1(yx)

yx
+ j2(yx)

6x2
, (A6)

and

Kd,NF (y, x) = yNF
12 (x)j0(yx)

+ [
xNF

12 (x) − yNF
12 (x)

] [
j1(yx)

yx
− j2(yx)

]
.

(A7)

For the MSA and Attard static inputs to the m-component
PM of equal-sized ions where Eq. (15) holds sway, total elec-
troneutrality implies that the short-time self-diffusion coeffi-
cients, DS

α , of all m ion components are equal to the short-time
self-diffusion coefficient, DS

HS , of a monodisperse system of
neutral hard spheres with volume fraction φT, independent of
the component index. The neutral hard-sphere short-time self
diffusion coefficient for stick hydrodynamic BC and PA treat-
ment of HIs is given by39, 40

DS
HS

D0
= 1 + 8 φT

∫ ∞

1
x2 gHS(x)KS,NF (x) dx

= 1 − 1.8315φT + O
(
φ2

T

)
, (A8)

where gHS(x) = 1 + hHS(x) is the equilibrium PDF of neutral
hard spheres, and hHS(x) is the corresponding total correlation
function. The numerically precise second-order virial part,
−0.219 φ2, in DS

HS/D
0 invokes additional three-body HIs

contributions and has been determined by Cichocki et al.41

As shown before42 by comparison with Stokesian dynam-
ics simulations, the PA-approximation-based DS

HS underes-
timates the simulation data for the hard-sphere self-diffusion
coefficient for volume fractions φ � 0.04.

Thus, for an electrolyte mixture of equal-sized ions, one
obtains DS

α = DS = DS
HS with

DS

D0
= 1 + φT h

S,NF
HS (A9)

in PA approximation, where

hS,NF
HS = 8

∫ ∞

1
dx x2 gHS(x)KS,NF (x). (A10)
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That all ion components share the same short-time self-
diffusion coefficient equal to the hard-sphere coefficient, even
in the case of ions with different valence, is a consequence
of the special decomposition property in Eq. (15) which is
obeyed by the linear Attard and MSA PDFs. These PDFs are
a decently good description for monovalent ions only. Note
here that for a binary symmetric z : z electrolyte of cations
of concentration n+ = nT/2 and valency z+ = z ≥ 1, and
anions of concentration n− = n+ and valency z− = −z, the
symmetry of the system implies the equality of the short-time
(DS

α = DS) and long-time (DL
α = DL) self-diffusion coeffi-

cients of cations and anions. Moreover, z2 = z2 and all odd
valency moments are zero.

For an electrolyte mixture of equal-sized, hydrodynami-
cally equivalent ions with static pair correlations described on
the MSA or Attard levels of approximation, the m × m hy-
drodynamic function matrix decouples into hard-sphere and
electro-steric parts according to

H(y) = DS Q + HNN (y)Pn + 1

z2
HZZ(y)P. (A11)

Here,

HZZ(y) = z2 Tr [P · H(y)] (A12)

and

HNN (y) = Tr[Pn · H(y)], (A13)

are the global number-number and charge-charge hydrody-
namic functions associated, respectively, with short-time cor-
relations in the total charge density (labeled by Z) and total
number density fluctuations (labeled by N). The matrix trace
operation is denoted by Tr. The two global hydrodynamic
functions, for HIs treated on the PA level, are given explic-
itly by

HNN (y) = DS + D0 φT

(
hd,RP

HS (y) + hd,NF
HS (y)

)
(A14)

and

HZZ(y) = z2
[
DS + D0 φT z2

(
hd,RP

EL (y) + hd,NF
EL (y)

)]
,

(A15)
respectively. We have introduced here the wavenumber-
dependent RP hard-sphere and electro-steric distinct con-
stituent functions

hd,RP
HS (y) = −15

j1(y)

y
+ 18

∫ ∞

1
dx x Kd,RP (y, x)hHS(x)

= 1 + 18
∫ ∞

0
dx x Kd,RP (y, x)hHS(x) (A16)

and

hd,RP
EL (y) = 18

∫ ∞

0
dx x Kd,RP (y, x)hEL(x), (A17)

respectively.
The related functions accounting for two-body near-field

HIs are

hd,NF
HS (y) = 24

∫ ∞

1
dx x2 Kd,NF (y, x)gHS(x) (A18)

and

hd,NF
EL (y) = 24

∫ ∞

1
dx x2 Kd,NF (y, x)gEL(x). (A19)

In the DH point-particle limit where hHS(r) = 0 and hEL(r)
= −LBexp {−κ r}/r, the hydrodynamic function matrix in
Eq. (A11) reduces to

H(q) = D0 1 − Dκ FOs(q/κ)P. (A20)

Here, Dκ is a self-diffusion coefficient associated with a
spherical body of radius equal to the Debye length (cf.
Eq. (I.84)). The Oseen function F Os(u) is given in Eq. (I.83).
The expression in Eq. (A20) for the matrix H(q) has been
used in Paper I85 as input for the calculation of conduction-
diffusion transport properties of hydrodynamically interacting
point ions.

APPENDIX B: SELF- AND CROSS-CORRELATION
CONTRIBUTIONS TO �μL

To identify the self-correlation and cross-correlation
parts of �μ, the terms in the inverse, D−1, of the matrix
D = 1 + H−1 · mc,irr which are of zeroth-order in nα∗ need
to be isolated. This is achieved using

H−1 = 1

DS
1 − HNN − DS

HNN DS
Pn − HZZ − z2 DS

HZZ DS
P (B1)

in combination with the splitting,

mc,irr = (mc,irr )self + (mc,irr )cross , (B2)

of mc,irr into its self-correlation and cross-correlation parts.
Here, (mc,irr )self is a diagonal matrix. In writing D = A + B,
we get

A = 1 + 1

DS
(mc,irr )self (B3)

for the diagonal matrix A, and

B = 1

DS
(mc,irr )cross

−
(

HNN − DS

HNN DS
Pn − HZZ − z2 DS

HZZ DS
P

)
· mc,irr

(B4)

for the remainder. Next, we use the matrix identity,

(A + B)−1 = A−1 − [A−1 · B · (A + B)−1]S, (B5)

where [· · · ]S means that the symmetric matrix part is taken.
Eq. (B5) follows from the Woodbury matrix identity47 in
combination with a Searle matrix identity. The latter identity
reads48

(A−1 + B−1)−1 = A · (A + B)−1 · B = B · (A + B)−1 · A.

(B6)
In this way, we obtain the diagonal self-correlation matrix part
of the relaxation mobility matrix as

kBT (�μ)self = −(mc,irr )self · A−1, (B7)
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implying

kBT (μαα)self = DL
α , (B8)

for the self-correlation matrix elements of the steady-state
mobility matrix. For the cross-correlation part of the relax-
ation mobility matrix, the more involved matrix expression

(�μ)cross = −[(mc,irr )cross · A−1]S

+ [mc,irr · [(A + B)−1 · B · A−1]S]S (B9)

is obtained.

APPENDIX C: SEDIMENTATION COEFFICIENT FOR
THE MIXED SLIP-STICK AND PERMEABLE-SPHERE
MODELS

An analysis similar to that in Sec. IV for ions with mixed
slip-stick BCs can be made for solvent-permeable PM ions.
We restrict our analysis in the following to the sedimenta-
tion coefficient of permeable ions, by discussing in addition
the effect of mixed slip-stick BCs. While not directly mea-
surable for electrolyte solutions, the sedimentation coefficient
contributes, according to Eqs. (A11) and (A13), to the mobil-
ity matrix μL.

We recall that for equal-sized ions and Attard or MSA
static PDFs, the ion sedimentation coefficient is equal to the
sedimentation coefficient, Ksed

HS = HNN/D0, of a homoge-
neous dispersion of monodisperse hard spheres. A closed an-
alytic expression for the sedimentation coefficient, K

sed,(m)
HS ,

of a concentrated dispersion of mixed slip-stick hard spheres,
with HIs treated on the dipolar far-field level, is obtained from
using the analytic PY solution24, 31 for gHS(x) in the evaluation
of hd,(m)

HS (y → 0 ; ξ ). The PY-gHS(x) is quite accurate for vol-
ume fractions φT � 0.4. In this way, we obtain

hd,(m)
HS (y → 0 ; ξ ) = P2(ξ ) − 3

5
P1(ξ )

φ2
T − 2φT + 10

2φT + 1
, (C1)

for the zero-wavenumber form of the (reduced) distinct hy-
drodynamic function part. Using Eq. (A14), this results in the
analytic expression,

K
sed,(m)
HS = 1 + P2(ξ )φT − 3

5
P1(ξ )

φ2
T − 2φT + 10

1 + 2φT

φT

= 1 + (P2(ξ ) − 6P1(ξ ))φT + 66

5
P1(ξ )φ2

T + O(φ3
T ),

(C2)

for the sedimentation coefficient of a homogeneous dispersion
of mixed slip-stick hard spheres. For stick BC, this expression
reduces to the result,

K
sed,stick
HS = (1 − φT )3

1 + 2φT

+ φ2
T

5

= 1 − 5φT + 66

5
φ2

T + O
(
φ3

T

)
, (C3)

derived earlier by Banchio and Nägele.40 The additive con-
tribution, φ2

T /5, is significant at larger volume fractions, and
it was left out by Brady and Durlofski69 in their derivation of
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FIG. 10. Sedimentation coefficient of impermeable neutral hard spheres as a
function of the total volume fraction. The analytic result in Eq. (C2), based
on the dipolar HIs approximation and the Percus-Yevick static input, is com-
pared with simulation data by Abade et al. (black filled circles)60 and Ladd
(black open squares)68 for hydrodynamically stick spheres. Blue and red solid
lines: Theoretical predictions for stick and perfect slip spheres according to
Eqs. (C3) and (C4), respectively. Black solid line: Experimental fit curve ac-
cording to Eq. (C5).

K
sed,stick
HS based on the RP approximation and the PY static in-

put. Equation (C3) has been re-derived recently by Gilleland
et al. using a variational method.38

For perfect slip BC, Eq. (C2) specializes to

K
sed,slip

HS = 1 − 2

5

φ2
T − 2φT + 10

1 + 2φT

φT

= 1 − 4φT + 44

5
φ2

T + O
(
φ3

T

)
. (C4)

Figure 10 displays the volume fraction dependence of the
sedimentation coefficient of hard spheres, as predicted by
Eq. (C3) for stick, and Eq. (C4) for perfect slip BCs. The an-
alytic results are compared with simulation results,60, 68 and
with the fit formula by Gilleland et al.,38

K
sed,stick
HS = (1 − φT )5.4

1 + 1.15φT

. (C5)

This fit formula constitutes an overall representation of exper-
imental sedimentation data for hydrodynamically stick col-
loidal hard spheres.

Numerically precise first-order virial expansion results
for the hard-sphere sedimentation coefficient have been ob-
tained by Cichocki and Felderhof.65 Their result is

K
sed,stick
HS = 1 − 6.546φT + O

(
φ2

T

)
(C6)

for the stick BC, and

K
sed,slip

HS = 1 − 4.489φT + O
(
φ2

T

)
. (C7)

for the perfect slip BC. Thus, Eq. (C5) has built into it the cor-
rect first-order virial term for hydrodynamically stick spheres.
The first-order in concentration coefficients in the analytic ex-
pressions in Eqs. (C3) and (C4) for stick and perfect slip BCs,
respectively, underestimate to some extent the magnitudes of
the numerically precise first-order virial coefficients.

According to Fig. 10, the simulation data are decently
well described by the analytic expression for K

sed,stick
HS in

Eq. (C3) for φT � 0.1, but at larger φT the simulation data
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FIG. 11. Short-time sedimentation coefficient, K
sed,perm

HS , of uniformly per-
meable hard spheres. Symbols are simulation results by Abade et al.,60 for
values of the inverse reduced penetration depth χ as indicated. For χ = 10,
e.g., the penetration depth is one tenth of the particle radius. Solid lines are
analytical predictions according to Eq. (C2) wherein P

(p)
i (χ ) is substituted

for P
(m)
i (ξ ), for i = 1, 2.

are significantly overestimated. This can be attributed to near-
field many-body HIs contributions neglected in Eq. (C3). If
the PA approximation is used instead in calculating the sed-
imentation coefficient, the influence of the near-field HIs is
overestimated, with nonphysical negative values of K

sed,stick
HS

predicted39 for φT > 0.22.
The sedimentation coefficient of perfect slip BC hard

spheres is in general larger than that for stick BC spheres,
owing to the reduced hydrodynamic coupling of the particles.

An analytic expression for the sedimentation coefficient,
K

sed,perm

HS , of uniformly permeable hard spheres with PY
static input and in dipolar HIs approximation follows readily
from Eq. (C2) by replacing P

(m)
i (ξ ) with P

(p)
i (χ ) for i = 1, 2.

For impermeable spheres χ = ∞, and Eq. (C3) for stick BC
spheres is recovered from this analytic expression. Figure 11
shows the sedimentation coefficient of uniformly permeable
spheres predicted by the analytic expression, for three val-
ues of χ as indicated. The analytic predictions are compared
with hydrodynamic force multipole simulation data by Abade
et al.60 The simulation data are overestimated for larger vol-
ume fractions. For φT � 0.35, the increase of the sedi-
mentation coefficient with increasing permeability (decreas-
ing χ ) is qualitatively correctly predicted but underestimated
quantitatively.

We close this appendix on noting that the ion sedimen-
tation coefficient contributes to the chemical (mutual) diffu-
sion coefficient of a binary electrolyte. The latter coefficient
can be determined experimentally. Chemical diffusion will
be analyzed, using the MCT-HIs method, in a forthcoming
publication.

1A. Anderko, P. Wang, and P. Rafal, Fluid Phase Equilib. 194–197, 123
(2002).

2J. M. G. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Elec-
trolyte Solutions, Topics in Physical Chemistry, Vol. 5 (Steinkopff, Darm-
stadt, 1998).

3H. Falkenhagen and W. Ebeling, in Theorie der Elektrolyte, edited by S.
Hirzel (Verlag, Stuttgart, 1971).

4H. Falkenhagen and M. Dole, Phys. Z 30, 611 (1929).
5L. Onsager and R. M. Fuoss, J. Phys. Chem. 36, 2689 (1932).

6H. Falkenhagen and E. L. Vernon, Philos. Mag. Series 7 74, 537 (1932).
7L. Onsager, Ann. N.Y. Acad. Sci. 46, 241 (1945).
8L. Onsager and S. K. Kim, J. Phys. Chem. 61, 215 (1957).
9J. Hubbard and L. Onsager, J. Chem. Phys. 67, 4850 (1977).

10J. Hubbard and P. Wolynes, J. Chem. Phys. 69, 998 (1978).
11B. Bagchi, J. Chem. Phys. 109, 3989 (1998).
12P. Attard, Phys. Rev. E 48, 3604 (1993).
13J. P. Hansen and I. R. Mc Donald, Theory of Simple Liquids, 3rd ed.

(Elsevier, Amsterdam, 2006).
14G. Nägele, Phys. Rep. 272, 215 (1996).
15J.-F. Dufreche, O. Bernard, and P. Turq, J. Mol. Liq. 118, 189 (2005).
16W. Ebeling, R. Feistel, G. Kelbg, and R. Sandig, J. Non-Equilib. Thermo-

dyn. 3, 11 (1978).
17W. Ebeling and J. Rose, J. Solution Chem. 10, 599 (1981).
18O. Bernard, W. Kunz, P. Turq, and L. Blum, J. Phys. Chem. 96, 3833

(1992).
19O. Bernard, W. Kunz, P. Turq, and L. Blum, J. Phys. Chem. 96, 398 (1992).
20S. Durand-Vidal, P. Turq, O. Bernard, C. Treiner, and L. Blum, Physica A

231, 123 (1996).
21S. Durand-Vidal, P. Turq, and O. Bernard, J. Phys. Chem. 100, 17345

(1996).
22J. F. Dufreche, O. Bernard, S. Durand-Vidal, and P. Turq, J. Phys. Chem. B

109, 9873 (2005).
23G. M. Roger, S. Durand-Vidal, O. Bernard, and P. Turq, J. Phys. Chem. B

113, 8670 (2009).
24L. Blum and J. S. Høye, J. Phys. Chem. 81, 1311 (1977).
25K. Hiroike, Mol. Phys. 33, 1195 (1977).
26A. Chandra, R. Biswas, and B. Bagchi, J. Am. Chem. Soc. 121, 4082

(1999).
27A. Chandra and B. Bagchi, J. Chem. Phys. 110, 10024 (1999).
28A. Chandra and B. Bagchi, J. Phys. Chem. B 104, 9067 (2000).
29A. Chandra and B. Bagchi, J. Chem. Phys. 113, 3226 (2000).
30C. Contreras-Aburto and G. Nägele, J. Phys.: Condens. Matter 24, 464108

(2012).
31M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).
32E. Waisman and J. L. Lebowitz, J. Chem. Phys. 56, 3093 (1972).
33J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier,

Amsterdam, 1996), Vol. 2.
34S. Kim and S. Karilla, Microhydrodynamics (Butterworth-Heinemann,

Boston, 1991).
35R. B. Jones and G. S. Burfield, Physica A 111, 562 (1982).
36D. J. Jeffrey and Y. Onishi, J. Fluid Mech. 139, 261 (1984).
37J. Rotne and S. Prager, J. Chem. Phys. 50, 4831 (1969).
38W. T. Gilleland, S. Torquato, and W. B. Russel, J. Fluid Mech. 667, 403

(2011).
39M. Heinen, A. J. Banchio, and G. Nägele, J. Chem. Phys. 135, 154504

(2011).
40A. J. Banchio and G. Nägele, J. Chem. Phys. 128, 104903 (2008).
41B. Cichocki, M. Ekiel-Jezewska, and E. Wajnryb, J. Chem. Phys. 111, 3265

(1999).
42M. Heinen, P. Holmqvist, A. J. Banchio, and G. Nägele, J. Appl. Crystal-

logr. 43, 970 (2010).
43E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 2nd ed. (Cam-

bridge University Press, Cambridge, 1997).
44G. Nägele, J. Bergenholtz, and J. K. G. Dhont, J. Chem. Phys. 110, 7037

(1999).
45G. Nägele and J. K. G. Dhont, J. Chem. Phys. 108, 9566 (1998).
46R. Mills and V. Lobo, Self-diffusion in Electrolyte Solutions (Elsevier,

Amsterdam, 1989).
47G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. (Johns

Hopkins University Press, Baltimore, 1996).
48S. R. Searle, Matrix Algebra Useful for Statistics, Wiley Series in Probabil-

ity and Statistics (Wiley, 2006).
49P. Szymczak and B. Chichocki, Europhys. Lett. 59, 465 (2002).
50E. Wajnryb, P. Szymczak, and B. Cichocki, Physica A 335, 339 (2004).
51M. Jardat, O. Bernard, P. Turq, and G. R. Kneller, J. Chem. Phys. 110, 7993

(1999).
52D. G. Miller, J. Phys. Chem. 70, 2639 (1966).
53P. Atkins and J. de Paula, Physical Chemistry, 7th ed. (Oxford University

Press, 2002).
54B. U. Felderhof, Physica A 84, 569 (1976).
55R. B. Jones and R. Schmitz, Physica A 149, 373 (1988).
56B. Cichocki, B. Felderhof, and R. Schmitz, PCH, PhysicoChem. Hydrodyn.

10, 383 (1988).

http://dx.doi.org/10.1016/S0378-3812(01)00645-8
http://dx.doi.org/10.1021/j150341a001
http://dx.doi.org/10.1080/14786443209462095
http://dx.doi.org/10.1111/j.1749-6632.1945.tb36170.x
http://dx.doi.org/10.1021/j150548a016
http://dx.doi.org/10.1063/1.434664
http://dx.doi.org/10.1063/1.436652
http://dx.doi.org/10.1063/1.476998
http://dx.doi.org/10.1103/PhysRevE.48.3604
http://dx.doi.org/10.1016/0370-1573(95)00078-X
http://dx.doi.org/10.1016/j.molliq.2004.07.036
http://dx.doi.org/10.1515/jnet.1978.3.1.11
http://dx.doi.org/10.1515/jnet.1978.3.1.11
http://dx.doi.org/10.1007/BF00650736
http://dx.doi.org/10.1021/j100188a049
http://dx.doi.org/10.1021/j100180a074
http://dx.doi.org/10.1016/0378-4371(96)00083-0
http://dx.doi.org/10.1021/jp9613605
http://dx.doi.org/10.1021/jp050387y
http://dx.doi.org/10.1021/jp901916r
http://dx.doi.org/10.1021/j100528a019
http://dx.doi.org/10.1080/00268977700101011
http://dx.doi.org/10.1021/ja983581p
http://dx.doi.org/10.1063/1.478876
http://dx.doi.org/10.1021/jp001052d
http://dx.doi.org/10.1063/1.1286963
http://dx.doi.org/10.1088/0953-8984/24/46/464108
http://dx.doi.org/10.1103/PhysRevLett.10.321
http://dx.doi.org/10.1063/1.1677645
http://dx.doi.org/10.1016/0378-4371(82)90052-8
http://dx.doi.org/10.1017/S0022112084000355
http://dx.doi.org/10.1063/1.1670977
http://dx.doi.org/10.1017/S0022112010004490
http://dx.doi.org/10.1063/1.3646962
http://dx.doi.org/10.1063/1.2868773
http://dx.doi.org/10.1063/1.479605
http://dx.doi.org/10.1107/S002188981002724X
http://dx.doi.org/10.1107/S002188981002724X
http://dx.doi.org/10.1063/1.478609
http://dx.doi.org/10.1063/1.476405
http://dx.doi.org/10.1209/epl/i2002-00218-2
http://dx.doi.org/10.1016/j.physa.2003.12.012
http://dx.doi.org/10.1063/1.478703
http://dx.doi.org/10.1021/j100880a033
http://dx.doi.org/10.1016/0378-4371(76)90105-9
http://dx.doi.org/10.1016/0378-4371(88)90111-2


134110-21 C. Contreras Aburto and G. Nägele J. Chem. Phys. 139, 134110 (2013)

57P. Reuland, B. U. Felderhof, and R. B. Jones, Physica A 93, 465 (1978).
58M. U. Bäbler, J. Sefcik, M. Morbidelli, and J. Bałdyga, Phys. Fluids 18,

013302 (2006).
59R. B. Jones, Physica A 92, 571 (1978).
60G. C. Abade, B. Cichocki, M. L. Ekiel-Jezewska, G. Nägele, and E.

Wajnryb, J. Chem. Phys. 132, 014503 (2010).
61G. C. Abade, B. Cichocki, M. L. Ekiel-Jezewska, G. Nägele, and E.

Wajnryb, J. Chem. Phys. 133, 084906 (2010).
62G. C. Abade, B. Cichocki, M. L. Ekiel-Jezewska, G. Nägele, and E.

Wajnryb, J. Chem. Phys. 136, 104902 (2012).
63J. Anderson, P. McKenzie, and R. Webber, Langmuir 7, 162 (1991).
64B. Cichocki, M. L. Ekiel-Jezewska, and E. Wajnryb, J. Chem. Phys. 119,

606 (2003).
65B. Cichocki and B. U. Felderhof, J. Chem. Phys. 89, 1049 (1988).
66D. Out and J. Los, J. Solution Chem. 9, 19 (1980).
67In Fig. 7 of our work on viscosity,30 the concentration values of the viscos-

ity data for NaCl in water were mistakenly multiplied by a factor of two.
However, all the theoretical results shown there are correct.

68A. J. C. Ladd, J. Chem. Phys. 93, 3484 (1990).
69J. Brady and L. Durlofski, Phys. Fluids 31, 717 (1988).
70J. F. Dufreche, O. Bernard, and P. Turq, J. Chem. Phys. 116, 2085 (2002).
71J. F. Dufreche, O. Bernard, M. Jardat, and P. Turq, J. Chem. Phys. 118,

8116 (2003).

72B. U. Felderhof, J. Chem. Phys. 118, 8114 (2003).
73G.-H. Gao, H.-B. Shi, and Y.-X. Yu, Fluid Phase Equilib. 256, 105

(2007).
74F. J. Stillinger and R. Lovett, J. Chem. Phys. 49, 1991 (1968).
75D. J. Mitchell, D. A. McQuarrie, A. Szabo, and J. Groeneveld, J. Stat. Phys.

17, 15 (1977).
76P. P. Ewald, Ann. Phys. (Berlin) 369, 253 (1921).
77D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys.

110, 8254 (1999).
78J. Falcón-González, R. Castañeda-Priego, and A. Gil-Villegas, personal

communication (2012).
79V. Lobaskin and P. Linse, J. Chem. Phys. 109, 3530 (1998).
80V. Lobaskin and P. Linse, J. Chem. Phys. 111, 4300 (1999).
81G. Nägele, M. Heinen, A. J. Banchio, and C. Contreras-Aburto, “Elec-

trokinetic and hydrodynamic properties of charged-particles systems: From
small electrolyte ions to large colloids,” Eur. Phys. J. E (to be published).

82J. Gapinski, A. Wilk, A. Patkowski, W. Häußler, A. J. Banchio, R. Pecora,
and G. Nägele, J. Chem. Phys. 123, 054708 (2005).

83M. Heinen, F. Zanini, F. Roosen-Runge, D. Fedunova, F. Zhang, M. Hen-
nig, T. Seydel, R. Schweins, M. Sztucki, M. Antalik et al., Soft Matter 8,
1404 (2012).

84M. G. McPhie and G. Nägele, J. Chem. Phys. 127, 034906 (2007).
85C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134109 (2013).

http://dx.doi.org/10.1016/0378-4371(78)90167-X
http://dx.doi.org/10.1063/1.2166125
http://dx.doi.org/10.1016/0378-4371(78)90152-8
http://dx.doi.org/10.1063/1.3274663
http://dx.doi.org/10.1063/1.3474804
http://dx.doi.org/10.1063/1.3689322
http://dx.doi.org/10.1021/la00049a029
http://dx.doi.org/10.1063/1.1576378
http://dx.doi.org/10.1063/1.455256
http://dx.doi.org/10.1007/BF00650134
http://dx.doi.org/10.1063/1.458830
http://dx.doi.org/10.1063/1.866808
http://dx.doi.org/10.1063/1.1427724
http://dx.doi.org/10.1063/1.1563605
http://dx.doi.org/10.1063/1.1563604
http://dx.doi.org/10.1016/j.fluid.2006.11.017
http://dx.doi.org/10.1063/1.1670358
http://dx.doi.org/10.1007/BF01089374
http://dx.doi.org/10.1002/andp.19213690304
http://dx.doi.org/10.1063/1.478738
http://dx.doi.org/10.1063/1.476948
http://dx.doi.org/10.1063/1.479728
http://dx.doi.org/10.1063/1.1996569
http://dx.doi.org/10.1039/c1sm06242e
http://dx.doi.org/10.1063/1.2753839
http://dx.doi.org/10.1063/1.4822297

