000138398 001__ 138398
000138398 005__ 20210129212229.0
000138398 0247_ $$2doi$$a10.1371/journal.pcbi.1003259
000138398 0247_ $$2WOS$$aWOS:000330355300021
000138398 0247_ $$2Handle$$a2128/5430
000138398 0247_ $$2altmetric$$aaltmetric:1819924
000138398 0247_ $$2pmid$$apmid:24130472
000138398 037__ $$aFZJ-2013-04532
000138398 041__ $$aEnglish
000138398 082__ $$a570
000138398 1001_ $$0P:(DE-Juel1)158019$$aButz-Ostendorf, Markus$$b0$$eCorresponding author$$ufzj
000138398 245__ $$aA Simple Rule for Dendritic Spine and Axonal Bouton Formation Can Account for Cortical Reorganization after Focal Retinal Lesions
000138398 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2013
000138398 3367_ $$2DRIVER$$aarticle
000138398 3367_ $$2DataCite$$aOutput Types/Journal article
000138398 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1570522404_2021
000138398 3367_ $$2BibTeX$$aARTICLE
000138398 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138398 3367_ $$00$$2EndNote$$aJournal Article
000138398 520__ $$aLasting alterations in sensory input trigger massive structural and functional adaptations in cortical networks. The principles governing these experience-dependent changes are, however, poorly understood. Here, we examine whether a simple rule based on the neurons’ need for homeostasis in electrical activity may serve as driving force for cortical reorganization. According to this rule, a neuron creates new spines and boutons when its level of electrical activity is below a homeostaticset-point and decreases the number of spines and boutons when its activity exceeds this set-point. In addition, neurons need a minimum level of activity to form spines and boutons. Spine and bouton formation depends solely on the neuron’s own activity level, and synapses are formed by merging spines and boutons independently of activity. Using a novel computational model, we show that this simple growth rule produces neuron and network changes as observed in thevisual cortex after focal retinal lesions. In the model, as in the cortex, the turnover of dendritic spines was increased strongest in the center of the lesion projection zone, while axonal boutons displayed a marked overshoot followed by pruning. Moreover, the decrease in external input was compensated for by the formation of new horizontal connections, which caused a retinotopic remapping. Homeostatic regulation may provide a unifying framework for understanding cortical reorganization, including network repair in degenerative diseases or following focal stroke.
000138398 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000138398 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000138398 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x2
000138398 588__ $$aDataset connected to
000138398 7001_ $$0P:(DE-HGF)0$$avan Ooyen, Arjen$$b1
000138398 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1003259$$n10$$pe1003259$$tPLoS Computational Biology$$v9$$x1553-734X$$y2013
000138398 8564_ $$uhttp://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003259
000138398 8564_ $$uhttps://juser.fz-juelich.de/record/138398/files/FZJ-2013-04532.pdf$$yOpenAccess
000138398 8564_ $$uhttps://juser.fz-juelich.de/record/138398/files/FZJ-2013-04532.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000138398 8564_ $$uhttps://juser.fz-juelich.de/record/138398/files/FZJ-2013-04532.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000138398 8564_ $$uhttps://juser.fz-juelich.de/record/138398/files/FZJ-2013-04532.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000138398 909__ $$ooai:juser.fz-juelich.de:138398$$pOA
000138398 909CO $$ooai:juser.fz-juelich.de:138398$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000138398 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158019$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000138398 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000138398 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000138398 9141_ $$y2013
000138398 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000138398 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138398 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138398 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138398 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138398 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138398 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138398 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000138398 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000138398 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000138398 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000138398 920__ $$lyes
000138398 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000138398 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000138398 980__ $$ajournal
000138398 980__ $$aVDB
000138398 980__ $$aI:(DE-Juel1)JSC-20090406
000138398 980__ $$aI:(DE-82)080012_20140620
000138398 980__ $$aUNRESTRICTED
000138398 9801_ $$aFullTexts