000138427 001__ 138427
000138427 005__ 20240619091102.0
000138427 0247_ $$2doi$$a10.1021/nl401067x
000138427 0247_ $$2ISSN$$a1530-6992
000138427 0247_ $$2ISSN$$a1530-6984
000138427 0247_ $$2WOS$$aWOS:000320485100080
000138427 0247_ $$2altmetric$$aaltmetric:1543016
000138427 0247_ $$2pmid$$apmid:23701385
000138427 037__ $$aFZJ-2013-04558
000138427 082__ $$a540
000138427 1001_ $$0P:(DE-HGF)0$$aXiang, Dong$$b0
000138427 245__ $$aThree-Terminal Single-Molecule Junctions Formed by Mechanically Controllable Break Junctions with Side Gating
000138427 260__ $$aWashington, DC$$bACS Publ.$$c2013
000138427 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1392720029_30879
000138427 3367_ $$2DataCite$$aOutput Types/Journal article
000138427 3367_ $$00$$2EndNote$$aJournal Article
000138427 3367_ $$2BibTeX$$aARTICLE
000138427 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138427 3367_ $$2DRIVER$$aarticle
000138427 500__ $$3POF3_Assignment on 2016-02-29
000138427 520__ $$aMolecules are promising candidates for electronic device components because of their small size, chemical tunability, and ability to self-assemble. A major challenge when building molecule-based electronic devices is forming reliable molecular junctions and controlling the electrical current through the junctions. Here, we report a three-terminal junction that combines both the ability to form a stable single-molecule junction via the mechanically controllable break junction (MCBJ) technique and the ability to shift the energy levels of the molecule by gating. Using a noncontact side-gate electrode located a few nanometers away from the molecular junction, the conductance of the molecule could be dramatically modulated because the electrical field applied to the molecular junction from the side gate changed the molecular electronic structure, as confirmed by the ab initio calculations. Our study will provide a new design for mechanically stable single-molecule transistor junctions fabricated by the MCBJ method.
000138427 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000138427 536__ $$0G:(DE-HGF)POF2-453$$a453 - Physics of the Cell (POF2-453)$$cPOF2-453$$fPOF II$$x1
000138427 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000138427 7001_ $$0P:(DE-HGF)0$$aJeong, Hyunhak$$b1
000138427 7001_ $$0P:(DE-HGF)0$$aKim, Dongku$$b2
000138427 7001_ $$0P:(DE-HGF)0$$aLee, Takhee$$b3
000138427 7001_ $$0P:(DE-HGF)0$$aCheng, Yongjin$$b4
000138427 7001_ $$0P:(DE-HGF)0$$aWang, Qingling$$b5
000138427 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b6$$eCorresponding author$$ufzj
000138427 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/nl401067x$$gVol. 13, no. 6, p. 2809 - 2813$$n6$$p2809 - 2813$$tNano letters$$v13$$x1530-6992$$y2013
000138427 8564_ $$zPublished final document.
000138427 8564_ $$uhttps://juser.fz-juelich.de/record/138427/files/FZJ-2013-04558_PV.pdf$$yRestricted$$zPublished final document.
000138427 909__ $$ooai:juser.fz-juelich.de:138427$$pVDB
000138427 909CO $$ooai:juser.fz-juelich.de:138427$$pVDB
000138427 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000138427 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000138427 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x1
000138427 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000138427 9131_ $$0G:(DE-HGF)POF2-453$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vPhysics of the Cell$$x1
000138427 9141_ $$y2013
000138427 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000138427 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138427 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138427 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138427 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138427 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138427 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138427 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138427 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000138427 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000138427 920__ $$lyes
000138427 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000138427 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x1
000138427 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000138427 980__ $$ajournal
000138427 980__ $$aVDB
000138427 980__ $$aUNRESTRICTED
000138427 980__ $$aI:(DE-Juel1)PGI-8-20110106
000138427 980__ $$aI:(DE-Juel1)ICS-8-20110106
000138427 980__ $$aI:(DE-82)080009_20140620
000138427 981__ $$aI:(DE-Juel1)IBI-3-20200312
000138427 981__ $$aI:(DE-Juel1)ICS-8-20110106