001     138427
005     20240619091102.0
024 7 _ |a 10.1021/nl401067x
|2 doi
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a WOS:000320485100080
|2 WOS
024 7 _ |a altmetric:1543016
|2 altmetric
024 7 _ |a pmid:23701385
|2 pmid
037 _ _ |a FZJ-2013-04558
082 _ _ |a 540
100 1 _ |a Xiang, Dong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Three-Terminal Single-Molecule Junctions Formed by Mechanically Controllable Break Junctions with Side Gating
260 _ _ |a Washington, DC
|c 2013
|b ACS Publ.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1392720029_30879
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Molecules are promising candidates for electronic device components because of their small size, chemical tunability, and ability to self-assemble. A major challenge when building molecule-based electronic devices is forming reliable molecular junctions and controlling the electrical current through the junctions. Here, we report a three-terminal junction that combines both the ability to form a stable single-molecule junction via the mechanically controllable break junction (MCBJ) technique and the ability to shift the energy levels of the molecule by gating. Using a noncontact side-gate electrode located a few nanometers away from the molecular junction, the conductance of the molecule could be dramatically modulated because the electrical field applied to the molecular junction from the side gate changed the molecular electronic structure, as confirmed by the ab initio calculations. Our study will provide a new design for mechanically stable single-molecule transistor junctions fabricated by the MCBJ method.
536 _ _ |a 423 - Sensorics and bioinspired systems (POF2-423)
|0 G:(DE-HGF)POF2-423
|c POF2-423
|x 0
|f POF II
536 _ _ |a 453 - Physics of the Cell (POF2-453)
|0 G:(DE-HGF)POF2-453
|c POF2-453
|x 1
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Jeong, Hyunhak
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kim, Dongku
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lee, Takhee
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Cheng, Yongjin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wang, Qingling
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 6
|u fzj
|e Corresponding author
773 _ _ |a 10.1021/nl401067x
|g Vol. 13, no. 6, p. 2809 - 2813
|p 2809 - 2813
|n 6
|0 PERI:(DE-600)2048866-X
|t Nano letters
|v 13
|y 2013
|x 1530-6992
856 4 _ |z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/138427/files/FZJ-2013-04558_PV.pdf
|z Published final document.
|y Restricted
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:138427
909 C O |o oai:juser.fz-juelich.de:138427
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128707
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-559H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 1
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-423
|2 G:(DE-HGF)POF2-400
|v Sensorics and bioinspired systems
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-450
|0 G:(DE-HGF)POF2-453
|2 G:(DE-HGF)POF2-400
|v Physics of the Cell
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)IBI-3-20200312
981 _ _ |a I:(DE-Juel1)ICS-8-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21