000138509 001__ 138509 000138509 005__ 20210129212250.0 000138509 0247_ $$2doi$$a10.1093/cercor/bht274 000138509 0247_ $$2ISSN$$a1047-3211 000138509 0247_ $$2ISSN$$a1460-2199 000138509 0247_ $$2WOS$$aWOS:000351935800017 000138509 0247_ $$2altmetric$$aaltmetric:1822016 000138509 0247_ $$2pmid$$apmid:24108800 000138509 037__ $$aFZJ-2013-04618 000138509 082__ $$a610 000138509 1001_ $$0P:(DE-HGF)0$$avan Aerde, K. I.$$b0 000138509 245__ $$aCell Type-Specific Effects of Adenosine on Cortical Neurons 000138509 260__ $$aOxford$$bOxford Univ. Press$$c2015 000138509 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1428503897_2402 000138509 3367_ $$2DataCite$$aOutput Types/Journal article 000138509 3367_ $$00$$2EndNote$$aJournal Article 000138509 3367_ $$2BibTeX$$aARTICLE 000138509 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000138509 3367_ $$2DRIVER$$aarticle 000138509 520__ $$aThe neuromodulator adenosine is widely considered to be a key regulator of sleep homeostasis and an indicator of sleep need. Although the effect of adenosine on subcortical areas has been previously described, the effects on cortical neurons have not been addressed systematically to date. To that purpose, we performed in vitro whole-cell patch-clamp recordings and biocytin staining of pyramidal neurons and interneurons throughout all layers of rat prefrontal and somatosensory cortex, followed by morphological analysis. We found that adenosine, via the A1 receptor, exerts differential effects depending on neuronal cell type and laminar location. Interneurons and pyramidal neurons in layer 2 and a subpopulation of layer 3 pyramidal neurons that displayed regular spiking were insensitive to adenosine application, whereas other pyramidal cells in layers 3–6 were hyperpolarized (range 1.2–10.8 mV). Broad tufted pyramidal neurons with little spike adaptation showed a small adenosine response, whereas slender tufted pyramidal neurons with substantial adaptation showed a bigger response. These studies of the action of adenosine at the postsynaptic level may contribute to the understanding of the changes in cortical circuit functioning that take place between sleep and awakening. 000138509 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0 000138509 588__ $$aDataset connected to 000138509 7001_ $$0P:(DE-Juel1)131702$$aQi, G.$$b1 000138509 7001_ $$0P:(DE-Juel1)131680$$aFeldmeyer, D.$$b2$$eCorresponding Author 000138509 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bht274$$gp. bht274$$n3$$p772-787$$tCerebral cortex$$v25$$x1460-2199$$y2015 000138509 8564_ $$uhttp://cercor.oxfordjournals.org/content/25/3/772.long 000138509 8564_ $$uhttps://juser.fz-juelich.de/record/138509/files/1209.pdf$$yRestricted 000138509 8564_ $$uhttps://juser.fz-juelich.de/record/138509/files/1209.pdf?subformat=pdfa$$xpdfa$$yRestricted 000138509 909CO $$ooai:juser.fz-juelich.de:138509$$pVDB 000138509 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131702$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000138509 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131680$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000138509 9130_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0 000138509 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0 000138509 9141_ $$y2015 000138509 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000138509 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000138509 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000138509 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000138509 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000138509 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000138509 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000138509 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000138509 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000138509 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000138509 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000138509 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000138509 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000138509 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0 000138509 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1 000138509 980__ $$ajournal 000138509 980__ $$aVDB 000138509 980__ $$aI:(DE-Juel1)INM-2-20090406 000138509 980__ $$aI:(DE-82)080010_20140620 000138509 980__ $$aUNRESTRICTED