000138509 001__ 138509
000138509 005__ 20210129212250.0
000138509 0247_ $$2doi$$a10.1093/cercor/bht274
000138509 0247_ $$2ISSN$$a1047-3211
000138509 0247_ $$2ISSN$$a1460-2199
000138509 0247_ $$2WOS$$aWOS:000351935800017
000138509 0247_ $$2altmetric$$aaltmetric:1822016
000138509 0247_ $$2pmid$$apmid:24108800
000138509 037__ $$aFZJ-2013-04618
000138509 082__ $$a610
000138509 1001_ $$0P:(DE-HGF)0$$avan Aerde, K. I.$$b0
000138509 245__ $$aCell Type-Specific Effects of Adenosine on Cortical Neurons
000138509 260__ $$aOxford$$bOxford Univ. Press$$c2015
000138509 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1428503897_2402
000138509 3367_ $$2DataCite$$aOutput Types/Journal article
000138509 3367_ $$00$$2EndNote$$aJournal Article
000138509 3367_ $$2BibTeX$$aARTICLE
000138509 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138509 3367_ $$2DRIVER$$aarticle
000138509 520__ $$aThe neuromodulator adenosine is widely considered to be a key regulator of sleep homeostasis and an indicator of sleep need. Although the effect of adenosine on subcortical areas has been previously described, the effects on cortical neurons have not been addressed systematically to date. To that purpose, we performed in vitro whole-cell patch-clamp recordings and biocytin staining of pyramidal neurons and interneurons throughout all layers of rat prefrontal and somatosensory cortex, followed by morphological analysis. We found that adenosine, via the A1 receptor, exerts differential effects depending on neuronal cell type and laminar location. Interneurons and pyramidal neurons in layer 2 and a subpopulation of layer 3 pyramidal neurons that displayed regular spiking were insensitive to adenosine application, whereas other pyramidal cells in layers 3–6 were hyperpolarized (range 1.2–10.8 mV). Broad tufted pyramidal neurons with little spike adaptation showed a small adenosine response, whereas slender tufted pyramidal neurons with substantial adaptation showed a bigger response. These studies of the action of adenosine at the postsynaptic level may contribute to the understanding of the changes in cortical circuit functioning that take place between sleep and awakening.
000138509 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000138509 588__ $$aDataset connected to
000138509 7001_ $$0P:(DE-Juel1)131702$$aQi, G.$$b1
000138509 7001_ $$0P:(DE-Juel1)131680$$aFeldmeyer, D.$$b2$$eCorresponding Author
000138509 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bht274$$gp. bht274$$n3$$p772-787$$tCerebral cortex$$v25$$x1460-2199$$y2015
000138509 8564_ $$uhttp://cercor.oxfordjournals.org/content/25/3/772.long
000138509 8564_ $$uhttps://juser.fz-juelich.de/record/138509/files/1209.pdf$$yRestricted
000138509 8564_ $$uhttps://juser.fz-juelich.de/record/138509/files/1209.pdf?subformat=pdfa$$xpdfa$$yRestricted
000138509 909CO $$ooai:juser.fz-juelich.de:138509$$pVDB
000138509 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131702$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000138509 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131680$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000138509 9130_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0
000138509 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000138509 9141_ $$y2015
000138509 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000138509 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138509 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138509 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138509 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138509 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138509 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138509 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138509 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000138509 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000138509 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000138509 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000138509 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000138509 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000138509 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000138509 980__ $$ajournal
000138509 980__ $$aVDB
000138509 980__ $$aI:(DE-Juel1)INM-2-20090406
000138509 980__ $$aI:(DE-82)080010_20140620
000138509 980__ $$aUNRESTRICTED