000013851 001__ 13851
000013851 005__ 20240712100907.0
000013851 0247_ $$2DOI$$a10.5194/acp-11-407-2011
000013851 0247_ $$2WOS$$aWOS:000286180200027
000013851 0247_ $$2Handle$$a2128/10029
000013851 037__ $$aPreJuSER-13851
000013851 041__ $$aeng
000013851 082__ $$a550
000013851 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000013851 1001_ $$0P:(DE-Juel1)129141$$aPloeger, F.$$b0$$uFZJ
000013851 245__ $$aInsight from ozone and water vapour on transport in the tropical tropopause layer (TTL)
000013851 260__ $$aKatlenburg-Lindau$$bEGU$$c2011
000013851 300__ $$a407 - 419
000013851 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000013851 3367_ $$2DataCite$$aOutput Types/Journal article
000013851 3367_ $$00$$2EndNote$$aJournal Article
000013851 3367_ $$2BibTeX$$aARTICLE
000013851 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000013851 3367_ $$2DRIVER$$aarticle
000013851 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v11$$x1680-7316
000013851 500__ $$3POF3_Assignment on 2016-02-29
000013851 500__ $$aWe thank T. Birner for helpful discussions, N. Thomas for programming support, M. Park for providing a SHADOZ-based ozone climatology and the ECMWF for reanalysis data support. F. Ploeger further thanks COST/WaVaCS (European Cooperation for Science and Technology/Atmospheric Water Vapour in the Climate System action) for funding a short term scientific mission at DAMTP/Cambridge, where main ideas for this work were developed.
000013851 520__ $$aWe explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL), and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE) and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data) are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. Compared to global HALOE observations, the diabatic model prediction underestimates the vertical ozone gradient. Comparison of the kinematic prediction with observations obtained during the tropical SCOUT-O3 campaign shows a large high bias above 390K potential temperature. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity between tropical ozone production and in-mixing from the stratosphere. In turn, ozone provides constraints on transport in the TTL and lower stratosphere that cannot be obtained from water vapour.
000013851 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0
000013851 588__ $$aDataset connected to Web of Science
000013851 650_7 $$2WoSType$$aJ
000013851 7001_ $$0P:(DE-HGF)0$$aFueglistaler, S.$$b1
000013851 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b2$$uFZJ
000013851 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b3$$uFZJ
000013851 7001_ $$0P:(DE-Juel1)129130$$aKonopka, P.$$b4$$uFZJ
000013851 7001_ $$0P:(DE-HGF)0$$aLiu, Y.S.$$b5
000013851 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b6$$uFZJ
000013851 7001_ $$0P:(DE-HGF)0$$aRavegnani, F.$$b7
000013851 7001_ $$0P:(DE-Juel1)VDB1410$$aSchiller, C.$$b8$$uFZJ
000013851 7001_ $$0P:(DE-HGF)0$$aUlanovski, A.$$b9
000013851 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b10$$uFZJ
000013851 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-11-407-2011$$gVol. 11, p. 407 - 419$$p407 - 419$$q11<407 - 419$$tAtmospheric chemistry and physics$$v11$$x1680-7316$$y2011
000013851 8567_ $$uhttp://dx.doi.org/10.5194/acp-11-407-2011
000013851 8564_ $$uhttps://juser.fz-juelich.de/record/13851/files/acp-11-407-2011.pdf$$yOpenAccess
000013851 8564_ $$uhttps://juser.fz-juelich.de/record/13851/files/acp-11-407-2011.gif?subformat=icon$$xicon$$yOpenAccess
000013851 8564_ $$uhttps://juser.fz-juelich.de/record/13851/files/acp-11-407-2011.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000013851 8564_ $$uhttps://juser.fz-juelich.de/record/13851/files/acp-11-407-2011.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000013851 8564_ $$uhttps://juser.fz-juelich.de/record/13851/files/acp-11-407-2011.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000013851 909CO $$ooai:juser.fz-juelich.de:13851$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000013851 9131_ $$0G:(DE-Juel1)FUEK491$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22
000013851 9132_ $$0G:(DE-HGF)POF3-249H$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vAddenda$$x0
000013851 9141_ $$y2011
000013851 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000013851 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000013851 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000013851 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$gIEK$$kIEK-7$$lStratosphäre$$x0
000013851 970__ $$aVDB:(DE-Juel1)125583
000013851 9801_ $$aUNRESTRICTED
000013851 9801_ $$aFullTexts
000013851 980__ $$aVDB
000013851 980__ $$aConvertedRecord
000013851 980__ $$ajournal
000013851 980__ $$aI:(DE-Juel1)IEK-7-20101013
000013851 980__ $$aUNRESTRICTED
000013851 981__ $$aI:(DE-Juel1)ICE-4-20101013