001     13851
005     20240712100907.0
024 7 _ |a 10.5194/acp-11-407-2011
|2 DOI
024 7 _ |a WOS:000286180200027
|2 WOS
024 7 _ |a 2128/10029
|2 Handle
037 _ _ |a PreJuSER-13851
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |a Ploeger, F.
|0 P:(DE-Juel1)129141
|b 0
|u FZJ
245 _ _ |a Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL)
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2011
300 _ _ |a 407 - 419
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Atmospheric Chemistry and Physics
|x 1680-7316
|0 9601
|v 11
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We thank T. Birner for helpful discussions, N. Thomas for programming support, M. Park for providing a SHADOZ-based ozone climatology and the ECMWF for reanalysis data support. F. Ploeger further thanks COST/WaVaCS (European Cooperation for Science and Technology/Atmospheric Water Vapour in the Climate System action) for funding a short term scientific mission at DAMTP/Cambridge, where main ideas for this work were developed.
520 _ _ |a We explore the potential of ozone observations to constrain transport processes in the tropical tropopause layer (TTL), and contrast it with insights that can be obtained from water vapour. Global fields from Halogen Occultation Experiment (HALOE) and in-situ observations are predicted using a backtrajectory approach that captures advection, instantaneous freeze-drying and photolytical ozone production. Two different representations of transport (kinematic and diabatic 3-month backtrajectories based on ERA-Interim data) are used to evaluate the sensitivity to differences in transport. Results show that mean profiles and seasonality of both tracers can be reasonably reconstructed. Water vapour predictions are similar for both transport representations, but predictions for ozone are systematically higher for kinematic transport. Compared to global HALOE observations, the diabatic model prediction underestimates the vertical ozone gradient. Comparison of the kinematic prediction with observations obtained during the tropical SCOUT-O3 campaign shows a large high bias above 390K potential temperature. We show that ozone predictions and vertical dispersion of the trajectories are highly correlated, rendering ozone an interesting tracer for aspects of transport to which water vapour is not sensitive. We show that dispersion and mean upwelling have similar effects on ozone profiles, with slower upwelling and larger dispersion both leading to higher ozone concentrations. Analyses of tropical upwelling based on mean transport characteristics, and model validation have to take into account this ambiguity between tropical ozone production and in-mixing from the stratosphere. In turn, ozone provides constraints on transport in the TTL and lower stratosphere that cannot be obtained from water vapour.
536 _ _ |a Atmosphäre und Klima
|c P23
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK491
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Fueglistaler, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Grooß, J.-U.
|0 P:(DE-Juel1)129122
|b 2
|u FZJ
700 1 _ |a Günther, G.
|0 P:(DE-Juel1)129123
|b 3
|u FZJ
700 1 _ |a Konopka, P.
|0 P:(DE-Juel1)129130
|b 4
|u FZJ
700 1 _ |a Liu, Y.S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Müller, R.
|0 P:(DE-Juel1)129138
|b 6
|u FZJ
700 1 _ |a Ravegnani, F.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schiller, C.
|0 P:(DE-Juel1)VDB1410
|b 8
|u FZJ
700 1 _ |a Ulanovski, A.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Riese, M.
|0 P:(DE-Juel1)129145
|b 10
|u FZJ
773 _ _ |a 10.5194/acp-11-407-2011
|g Vol. 11, p. 407 - 419
|p 407 - 419
|q 11<407 - 419
|0 PERI:(DE-600)2069847-1
|t Atmospheric chemistry and physics
|v 11
|y 2011
|x 1680-7316
856 7 _ |u http://dx.doi.org/10.5194/acp-11-407-2011
856 4 _ |u https://juser.fz-juelich.de/record/13851/files/acp-11-407-2011.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/13851/files/acp-11-407-2011.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/13851/files/acp-11-407-2011.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/13851/files/acp-11-407-2011.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/13851/files/acp-11-407-2011.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:13851
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
913 1 _ |k P23
|v Atmosphäre und Klima
|l Atmosphäre und Klima
|b Erde und Umwelt
|z vormals P22
|0 G:(DE-Juel1)FUEK491
|x 0
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-249H
|2 G:(DE-HGF)POF3-200
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k IEK-7
|l Stratosphäre
|g IEK
|0 I:(DE-Juel1)IEK-7-20101013
|x 0
970 _ _ |a VDB:(DE-Juel1)125583
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21