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Abstract. We explore the potential of ozone observations

to constrain transport processes in the tropical tropopause

layer (TTL), and contrast it with insights that can be ob-

tained from water vapour. Global fields from Halogen Oc-

cultation Experiment (HALOE) and in-situ observations are

predicted using a backtrajectory approach that captures ad-

vection, instantaneous freeze-drying and photolytical ozone

production. Two different representations of transport (kine-

matic and diabatic 3-month backtrajectories based on ERA-

Interim data) are used to evaluate the sensitivity to differ-

ences in transport. Results show that mean profiles and sea-

sonality of both tracers can be reasonably reconstructed. Wa-

ter vapour predictions are similar for both transport represen-

tations, but predictions for ozone are systematically higher

for kinematic transport. Compared to global HALOE ob-

servations, the diabatic model prediction underestimates the

vertical ozone gradient. Comparison of the kinematic predic-

tion with observations obtained during the tropical SCOUT-

O3 campaign shows a large high bias above 390K potential

temperature. We show that ozone predictions and vertical

dispersion of the trajectories are highly correlated, rendering

ozone an interesting tracer for aspects of transport to which

water vapour is not sensitive. We show that dispersion and

mean upwelling have similar effects on ozone profiles, with

slower upwelling and larger dispersion both leading to higher

ozone concentrations. Analyses of tropical upwelling based
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on mean transport characteristics, and model validation have

to take into account this ambiguity between tropical ozone

production and in-mixing from the stratosphere. In turn,

ozone provides constraints on transport in the TTL and lower

stratosphere that cannot be obtained from water vapour.

1 Introduction

The tropical tropopause layer (TTL) plays an important role

for climate, as changes therein due to increasing greenhouse

gases may affect troposphere-stratosphere exchange of radia-

tively active trace gases (Highwood and Hoskins, 1998; Get-

telman and Forster, 2002; Fueglistaler et al., 2009a). How-

ever, the relative importance of different transport processes

in the TTL such as deep convection, large-scale upwelling,

and horizontal exchange with the extratropics remains a mat-

ter of debate. Chemistry Climate Models and Chemical

Transport Models are suitable tools to understand and quan-

tify these processes. However, model validation is subject to

uncertainties arising from ambiguities in the processes that

control the model’s dynamical and tracer fields. That is,

two processes may have a similar impact on a model’s tracer

fields, and agreement with observations alone does not vali-

date the model’s particular choice of the parameterisation of

the two processes.

Water vapour and ozone in the TTL are both controlled

to leading order by relatively simple processes. For water

vapour, the region of minimum temperatures around the trop-

ical tropopause poses strong constraints on the amount of
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water entering the stratosphere (Brewer, 1949; Holton and

Gettelman, 2001; Bonazzola and Haynes, 2004; Fueglistaler

et al., 2005). Also water vapour mixing ratios in the extra-

tropical lowermost stratosphere are strongly related to trop-

ical temperatures (compare the recent study of Hoor et al.,

2010). For ozone, Avallone and Prather (1996) showed that

in the tropical lower stratosphere the chemistry is dominated

by ozone production from photolysis. Correspondingly, the

annual cycle in lower stratospheric ozone concentrations has

been linked to the annual cycle in upwelling of the strato-

spheric residual circulation (Randel et al., 2007), but sea-

sonal variations in in-mixing of extratropical air masses may

also play an important role (Konopka et al., 2009, 2010).

Here, we combine transport as represented by backtrajec-

tories based on European Centre for Medium-RangeWeather

Forecasts (ECMWF) ERA-Interim data (Simmons et al.,

2006; Uppala et al., 2008) with simple models of physical

and chemical processes controlling water vapour and ozone.

Fueglistaler et al. (2005) and Fueglistaler and Haynes (2005)

showed that the mean, the annual cycle and interannual vari-

ability of water entering the stratosphere in the tropics can

be reconstructed from trajectories, assuming that the lowest

temperature in the backward history of an air parcel (here

a trajectory) determines its water vapour mixing ratio. A

similar approach was shown to give good agreement also

with water vapour in-situ measurements in the TTL (Schiller

et al., 2009). For ozone, trajectory reconstruction methods

are less established. Previous work includes reconstructions

of tropical ozone observations based on passive tracer trans-

port (Legras et al., 2003; Pisso and Legras, 2008; James and

Legras, 2009), and based on a simplified, one-dimensional

trajectory approach (Konopka et al., 2009).

Here, we use the full 4-dimensional transport as given by

trajectories to predict both the annual mean and the annual

cycle of tropical mean ozone concentrations, and to predict

ozone concentrations from in-situ measurements during the

SCOUT-tropical aircraft campaign over Darwin/Australia

(Brunner et al., 2009). We contrast results for ozone with the

corresponding results for water vapour in order to address

the following questions: (i) Can ozone in the TTL be pre-

dicted by photochemical production and transport based on

trajectories, and how does the quality of the prediction com-

pare with the results for water vapour? (ii) Which processes

control TTL ozone concentrations in the model calculations?

(iii) What can be learnt from ozone and water vapour predic-

tions regarding transport in the TTL?

The paper is structured as follows. Section 2 provides

a description of data and methods, and Sect. 3 shows the

model predictions for water vapour and ozone, and compar-

ison to observations. Section 4 discusses how transport af-

fects ozone and water vapour model calculations, and Sect. 5

discusses the results, and how they affect conclusions from

model validation and process studies.

2 Data and method

2.1 Trajectory calculations

We reconstruct water vapour and ozone from backtrajecto-

ries calculated with the Chemical Lagrangian Model of the

Stratosphere (CLaMS) trajectory model (McKenna et al.,

2002a,b; Konopka et al., 2007). Two different calculations

for vertical transport (diabatic and kinematic) allow us to

study the impact of differences in model transport on pre-

dicted tracer fields.

The diabatic trajectories refer to a transport representation

with potential temperature θ as vertical coordinate. Cross-

isentropic vertical velocity θ̇ = dθ/dt is taken from the fore-

cast total diabatic heating rate, being the sum of all-sky ra-

diative heating and all other diabatic heating terms, includ-

ing latent heat release (see e.g., Fueglistaler et al., 2009b;

Ploeger et al., 2010). Conversely, kinematic trajectories use

the reanalysis vertical wind ω = dp/dt as vertical velocity.

We use reanalysis data every six hours, with the heating rates

interpolated from the nearest 6 h or 12 h forecasts. The ω-

wind provided by the ECMWF is calculated from the small

residual between the large horizontal wind terms in the con-

tinuity equation, and it is known that the (instantaneous) ω-

field from analysed data is noisy, giving higher dispersion for

kinematic trajectories than diabatic trajectories (e.g., Schoe-

berl et al., 2003; Wohltmann and Rex, 2008). Trajectory dis-

persion may depend on the sampling frequency of velocity

fields (compare e.g., Pisso et al., 2010). Note that for ERA-

Interim used here, the differences in transport between dia-

batic and kinematic trajectories are smaller than for the older

ERA-40 data (Liu et al., 2010), likely due to the 4D-Var

assimilation in ERA-Interim (compare Monge-Sanz et al.,

2007), but the differences are still detectable and significant

as we will show below.

Trajectories are started on the 15th day of each month of

the year 2002 in the tropical lower stratosphere on the 400K

potential temperature level on a regular grid with 1◦×1◦ lati-

tude/longitude spacing, between ±20◦ latitude, and are inte-

grated backwards in time for 90 days. For the comparison

with in-situ measurements during the tropical SCOUT-O3

campaign (Brunner et al., 2009), the trajectories are started

along the research aircraft (M55 Geophysica) flight tracks

every second and are integrated backwards in time for 60

days. We include all observations of both local and transfer

flights equatorwards of ±20◦ latitude in our analysis, except

for the two flights on 30 November 2005 (11 flights in total).

During these two excluded flights a single deep convective

storm was repeatedly probed and observations do not repre-

sent background TTL conditions.

Sensitivity to the length of the integration period has been

evaluated by comparing results obtained from 5 month inte-

gration for the global fields, and 90 days for the comparison

with in-situ measurements. In the following, we show results
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Fig. 1. Schematic of the method used in this paper (see text). The

figure shows troposphere-to-stratosphere transport (TST trajecto-

ries) and purely stratospheric trajectories. The upwelling branch

of the stratospheric Brewer-Dobson (BD) circulation is displayed

as a thick grey arrow, quasi-horizontal stratosphere-troposphere ex-

change as a grey wavy arrow, particular isentropes as thin grey

dashed, the tropopause as a grey solid line. The Cold Point (CP)

layer between 360 and 380K is coloured light-grey. The black ar-

rows characterising typical TST and stratospheric backtrajectories

point backwards in time. The red dot shows the starting location.

Green dots illustrate the initialisation (locations) of backtrajectories

with ECMWF (HALOE) water vapour and ozone at the end points.

The blue dot illustrates the location where dehydration to the lo-

cal minimum saturation water vapour mixing ratio (H2Osat) occurs

along the TST backtrajectory.

and conclusions only for those aspects of the calculations that

are insensitive to trajectory length.

In order to facilitate the interpretation of results, we group

the model predictions of water vapour and ozone according

to the pathway of the trajectories, as illustrated in Fig. 1. The

separation criterion is the minimum potential temperature en-

countered along the trajectory. The ensemble of trajecto-

ries that can be traced back to below 350K potential tem-

perature is called the “troposphere-to-stratosphere transport”

(TST) ensemble (Fueglistaler et al., 2004), the remainder

the “stratospheric” ensemble. Here, the choice of the 350K

value is not critical, a slightly different value (below the level

of zero radiative heating around 355K) yields very similar

results. The separation between TST and stratospheric trajec-

tories proves useful because for the TST ensemble both water

vapour and ozone are largely independent of initial condi-

tions for these tracers. That is, water vapour for TST is given

by the minimum saturation mixing ratio. For ozone, the in-

tegrated production along trajectories is of the same order

of magnitude as the initialisation ozone mixing ratio. Con-

versely, the tracer predictions of the stratospheric ensemble

strongly reflect initial conditions. That is, the minimum sat-

uration mixing ratio encountered along trajectories that stay

in the stratosphere is often 30% and higher (see below) than

the initialisation value for water vapour, and hence the pre-

dicted value is the initialisation value. For ozone, production

along the path of the stratospheric ensemble does play a role,

but because of the generally much larger ozone concentra-

tions in the stratosphere than in the troposphere, the initial

concentration often dominates the predicted concentrations.

2.2 Water vapour model

We predict water vapour in the TTL (at the starting location

of the backtrajectories, see Fig. 1) based on condensation and

complete fall-out of the condensate along the trajectory. It

is known that stratospheric water vapour predictions based

on the minimum saturation mixing ratio from ERA-Interim

data are drier than observed (James et al., 2008; Liu et al.,

2010). Following the approach of James et al. (2008) con-

densation in our model occurs every time relative humidity

exceeds 130%. This threshold is well within the uncertain-

ties of ice nucleation, and supersaturation with respect to

ice is frequently observed (e.g., Krämer et al., 2009). But

we emphasize that the point here is simply to achieve bet-

ter agreement with measurements without any claim about

cloud microphysical aspects. The trajectories are initialised

with ERA-Interim water vapour mixing ratios. Model results

for TST trajectories are independent of this initialisation, but

for the stratospheric ensemble, relative humidity along the

trajectory frequently stays below 130%, such that the pre-

dicted water vapour for this ensemble essentially reflects ini-

tial conditions. Model results are interpreted only in terms of

differences between the two trajectory methods.

2.3 Ozone model

For ozone, trajectories are initialised with ozone mixing ra-

tios from ERA-Interim, and subsequent integration of the

dominant production due to oxygen photolysis (see Aval-

lone and Prather, 1996) and loss through HOx radicals (see

e.g., Osterman et al., 1997). To overcome the difficulty of

modelling the tropospheric ozone production due to hydro-

gen and nitrogen radicals (Wennberg et al., 1998), which re-

quires very detailed information about the atmospheric com-

position, ozone values below 360K potential temperature are

prescribed from ERA-Interim. For the photolysis calcula-

tion with the CLaMS photolysis scheme (Meier et al., 1982;

Becker et al., 2000), a climatological ozone field (Grooß and

Russell, 2005), based on measurements from the Halogen

Occultation Experiment (HALOE version 19 data, see Rus-

sell et al., 1993), is used as background. The HOx fields

are taken from a model (CLaMS) based climatology. All
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calculations shown here include the loss from reaction with

HOx, but we show in Appendix A that neglecting the loss

process would not change results significantly.

This simple ozone model captures the most important

chemical processes controlling ozone in the tropical lower

stratosphere and around tropopause levels, but not further be-

low in the troposphere.

For the stratospheric trajectories that cannot be traced back

to the troposphere and which are initialised with stratospheric

ozone concentrations, the initial value is often larger than

the integrated production. As such, results are sensitive to

initial conditions. We evaluate the sensitivity to ozone ini-

tial conditions with a calculation where we use a zonal mean

HALOE ozone climatology (further details in Sect. 2.4) in-

stead of the ERA-Interim ozone field as initial condition. In

the region of interest, ERA-Interim ozone concentrations are

generally higher compared to the HALOE climatology and

results based on the two initialisations yield a corresponding

offset. Similarly to the case of water vapour, the emphasis

of this paper is on differences in model predicted ozone be-

tween the two trajectory calculations, and these differences

are robust to variations in initial conditions.

2.4 Observations

We compare the model predictions for water vapour and

ozone against observations from different sensors and plat-

forms. For the reconstructions of tropical mean fields and

profiles, we compare the model predictions with observa-

tions from the Halogen Occultation Experiment (HALOE).

HALOE measurements of water vapour and ozone are

binned into zonal mean, monthly means averaged over the

period 2001–2005, using the method of Grooß and Russell

(2005). For comparison with ‘tropical’ mean profiles and

timeseries, data are averages between 20◦ S–20◦N in lati-

tude. For the sensitivity calculation with respect to initial

conditions, the HALOE initialisation data is binned on a reg-

ular grid in equivalent latitude (grid spacing of 15◦), with

equivalent latitude defined according to Nash et al. (1996).

For ozone, we also show measurements from the Southern

Hemisphere Additional Ozone (SHADOZ) (Thompson et al.,

2007) network, whereby we use a subset of seven stations as

defined in Randel et al. (2007) to construct a “tropical mean”

profile.

For the comparison with in-situ measurements, we use

the Fast In-Situ Hygrometer FISH (Zöger et al., 1999) to-

tal water measurements and the ozone measuements from

the Fast OZone ANalyser FOZAN (Ulanosvky et al., 2001)

obtained during the SCOUT-O3 tropical campaign (as ex-

plained above). Further, we calculated a “typical” profile of

water vapour and ozone from HALOE data for the period

and region covered by the SCOUT-O3 tropical campaign. To

this end, we average all HALOE measurements obtained be-

tween 15 November and 15 December 2005 within the region

of 80◦ ≤ longitude≤ 160◦ and −15◦ ≤ latitude≤ 10◦).

3 Ozone and water vapour in the TTL

3.1 Reconstruction of tropical mean and local in-situ

observations

Figure 2 shows the annual cycle of water vapour and ozone

at 400K, averaged between ±20◦ latitude. Model pre-

dicted mean water vapour mixing ratios are in agreement

with observations as expected from the configuration of the

model (Sect. 2.2). The slight phase shift between model

calculations and observations is similar to that reported by

Fueglistaler et al. (2005). Of relevance here, however, is the

fact that the diabatic and kinematic model calculations give

fairly similar results.

For ozone, the model predictions roughly span the range

from low-biased (diabatic calculations using HALOE initial-

isation) to high-biased (kinematic calculations using ERA-

Interim initialisation). The differences between predicted

ozone concentrations follow a simple pattern: calculations

initialised with HALOE yield lower concentrations than

those initialised with the ERA-Interim ozone field, and the

kinematic calculations yield higher concentrations than those

based on the diabatic trajectory calculations. Importantly,

the differences between kinematic and diabatic calculations

(about 20% for either initialisation) are much larger for

ozone than for water vapour.

The seasonality of the model predicted ozone fits observa-

tions reasonably well, with a tendency to overestimate the

amplitude in particular for the diabatic trajectory calcula-

tions. Overall, however, agreement with observations is rea-

sonable in particular if one bears in mind the observational

uncertainty between HALOE and SHADOZ estimates, ev-

ident from the difference between HALOE and SHADOZ

mean concentrations and their variance in Fig. 2b. The most

interesting result is the difference between the calculations

based on kinematic and diabatic trajectories, with the kine-

matic ozone predictions significantly higher than the diabatic

predictions.

Figure 2c shows the predicted ozone mixing ratios based

solely on the initial values, i.e. the passively advected ozone.

The figure shows that the different initialisation accounts for

much of the difference between the full model calculations.

Figure 2d shows the predicted ozone based only on chem-

istry along the trajectories. We note that for all calculations,

the integrated production over the 3-month trajectory period

is about half (and less) that of the initialisation field. The dif-

ferences between diabatic and kinematic ozone predictions

due to chemistry and passive transport are of the same order

of magnitude. Also, the seasonality of predicted ozone con-

centrations is not a result of chemical production along these

3-month trajectories, but of passive transport of the initiali-

sation values. The chemical production along the 3-month

back trajectories yields a semiannual cycle that arises from

the annual cycle of the Earth’s inclination.
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Fig. 2. Monthly mean, tropical mean (20◦ S–20◦ N latitude) mix-

ing ratios at 400K for (a)water vapour and (b) ozone from HALOE

(averaged for years 2001–2005; grey solid lines, with range of ±1-

standard deviation as vertical bars), and from SHADOZ (1998–

2006; for ozone only, grey dotted line and grey shading for range of

±1-standard deviation). The model predictions based on initialisa-

tion with ERA-Interim are shown as solid lines, and with initialisa-

tion based on HALOE as dashed lines (for ozone only); calculations

based on kinematic trajectories in black, diabatic trajectories in red.

(c) Predicted ozone concentrations based on initial conditions only

(i.e. passively advected ozone); same conventions as in (b). (d)

Predicted ozone concentrations based on chemistry along trajecto-

ries; same conventions as in (b). All lines are harmonic fits to the

monthly mean values, using annual and semi-annual harmonics.

An integration length of 90 days for trajectories started on

400K potential temperature in the tropics is close to the ex-

pected mean transport time from the upper troposphere to

this level. Hence, one may suspect that the lack of an an-

nual cycle in the TST-ensemble in Fig. 2d arises from trun-

cation of the age-spectrum (compare Hall and Plumb, 1994;

Waugh and Hall, 2002) at a value close to the mean transport

timescale. However, sensitivity calculations using 5 month

instead of 3 month back trajectories give very similar results

(not shown). This result supports the argument of Konopka

et al. (2009) and Konopka et al. (2010) that the annual cycle

in lower stratospheric ozone is a consequence of more in-

mixing of stratospherically old air during the boreal summer

months.

This detailed analysis shows that for the model predictions

of the annual cycle of ozone at 400K, the total difference

(difference in initialisation with identical fields, and chem-

ical production) between the volume mixing ratios of the

kinematic and diabatic calculation is about 50 ppbv (parts per

billion by volume), which is similar to the difference arising

from using different initialisation fields.

We next analyse profiles of model predicted ozone and wa-

ter vapour for the observations during the tropical SCOUT-

O3 campaign. Figure 3a shows the FISH total water pro-

file, HALOE water vapour profile, and the model water

vapour predictions. Figure 3b shows the same information

for ozone. Note that the flight track portions used for these

profiles are not identical for the two species, as instruments

were not always operational at the same time.

For water vapour, the in-situ measurements are drier than

HALOE at tropopause levels (375K–395K potential temper-

ature). The model predictions are generally within the range

of in-situ observations (though a dry tendency is noted for

levels below 400K), and the difference between kinematic

and diabatic model calculations around 400K is larger than

in the calculations of the annual cycle (Fig. 2a).

For ozone, the in-situ measurements and HALOE mea-

surements agree quite well. For the ozone model predictions,

we find again the same pattern with respect to initialisation

and trajectory type as seen in the annual cycle (Fig. 2b). An

interesting difference between the SCOUT-O3 ozone profile

prediction (Fig. 3b) and the prediction for the annual cycle at

400K (Fig. 2b) is that the differences between diabatic and

kinematic calculations (i.e. red versus black lines of either

initialisation) are much larger than the differences between

the two initialisations (i.e. solid versus dotted of either tra-

jectory type).

Figure 3c shows the same analysis for tropical mean ozone

concentrations. As before, the diabatic trajectories yield

lower ozone mixing ratios than the kinematic trajectories,

and the calculations initialised with HALOE ozone yield

lower values than those with ERA-Interim ozone. Fur-

ther, the figure shows that the model predictions of the

TST-ensemble are very similar between kinematic and dia-

batic trajectories, which confirms that the differences in the
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Fig. 3. Mean water vapour (a) and ozone (b) profiles during the

SCOUT-O3 campaign, in 5K potential temperature bins. In-situ

observations are from the FISH (water vapour, black dots; grey

range 1-standard deviation) and FOZAN (ozone, black dots, grey

range 1-standard deviation) instruments. Grey solid lines (bars

show 1-standard deviation) are HALOE water vapour and ozone

measurements during the SCOUT-O3 campaign (see text). Model

predictions based on kinematic (black) and diabatic (red) trajecto-

ries with initialisation based on ERA-Interim are shown as solid,

with ozone initialisation based on HALOE as dashed curves. Pan-

els on righthandside show TST fractions (criterion 350K potential

temperature, see text). (c) Profiles of tropical mean ozone concen-

trations from HALOE, SHADOZ and the 4 model calculations as

labelled. Thin dashed red/black lines are ozone predictions from

the TST ensemble with initialisation from HALOE ozone.

predicted ozone field are driven by the stratospheric trajec-

tory ensemble.

3.2 Importance of stratospheric trajectories

We use the separation of trajectories into TST trajectories

and purely stratospheric (those that cannot be traced back to

below 350K) trajectories to discuss the differences between

diabatic and kinematic model predictions in more detail. The

right part of the panels of Fig. 3a/b show the TST fractions

for the calculations. The diabatic trajectories have generally

a higher TST-fraction than the kinematic trajectories due to

the higher vertical dispersion of the latter (further discussed

below). Up to about 390K potential temperature, model pre-

dictions are dominated by TST trajectories (with low initial

ozone, irrespective of the initialisation field), while above the

results are increasingly dominated by the stratospheric en-

semble.

Figure 4 shows the probability distribution functions

(PDFs) of the differences between measurements and model

predictions for the in-situ profiles of water vapour and ozone

between 390 and 420K. The figure shows that for wa-

ter vapour, the distributions are slightly skewed (for dia-

batic/kinematic to negative/positive differences), and that the

shapes of the PDF are broadly similar for kinematic and di-

abatic trajectories, as well as for the TST-ensemble of the

kinematic trajectories (grey shading). For ozone, the figure

shows that the kinematic trajectory calculation has a distinct

tail of very high biases. Comparison with the PDF of the

TST-ensemble shows that this tail of high biases is entirely

due to stratospheric trajectories. In the case of the diabatic

trajectories, no tail of very high biases is observed (note the

logarithmic scale).

To summarise, our analysis shows that model predictions

of ozone are sensitive to initialisation and transport, and that

it is in particular the stratospheric trajectory ensemble that is

most sensitive to these factors. While the sensitivity to the

initialisation field is not surprising, the much higher sensi-

tivity to transport of ozone than water vapour suggests that

ozone is a much better tracer to study important aspects of

transport that observations of water vapour cannot resolve.

4 Diabatic versus kinematic transport

The bulk transport characteristics for TST trajectories calcu-

lated from ERA-Interim data, like TTL residence times, are

similar for kinematic and diabatic trajectories (Ploeger et al.,

2010; Liu et al., 2010). Figure 5 shows the position of the

global (top panels) and in-situ trajectories (bottom panels)

when tracing them back in time for 60 days. The main differ-

ences observed here, already noticed by Ploeger et al. (2010)

and Liu et al. (2010), are the higher vertical dispersion and

the occurrence of descent in the equatorial lower stratosphere

for the kinematic trajectories. Consequently, the positions
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Fig. 4. Probability distribution functions (PDFs) of differences

between observed and reconstructed water vapour (a) and ozone

(b) between 390 and 420K. The bin size is 25 ppbv (0.1 ppmv) for

ozone (water vapour). Dashed lines show the means of the distri-

butions. The grey shading shows the PDF for the kinematic TST

ensemble.

where the kinematic model calculations are initialised are

more widespread than those of the diabatic calculations. The

figure shows that the differences are particularly prominent

for the case study of the SCOUT-O3 tropical campaign.

The differences in dispersion between ERA-Interim kine-

matic and diabatic trajectory calculations arise both from

larger noise in the instantaneous vertical wind field than dia-

batic heating rates, and from large-scale and time-mean sys-

tematic differences in vertical transport. Horizontal maps of

large-scale differences between diabatic and kinematic mean

cross-isentropic trajectory motion in the upper TTL between

380–400K for boreal winter 2002 were shown in (Ploeger

et al., 2010, Fig. 6). The velocity maps for the SCOUT-

O3 period (November/December 2005) are very similar (not

shown). In particular, the maritime continent and Northern

Australia turn out as regions where cross-isentropic motion

is directed upward for diabatic trajectories and downward for

kinematic trajectories. This net subsidence in the inner trop-

ics vertical ω wind field shows up very prominently also in

Fig. 5b.

In the following, we demonstrate that ozone is a remark-

able tracer for dispersion, and that much of the differences

between kinematic and diabatic model predictions are a di-

rect consequence of the sensitivity of ozone to trajectory dis-

persion, caused by inhomogeneities in the wind field. In ad-

dition to model predictions of ozone, we calculate the verti-

cal “dispersion” of trajectories in terms of their variance in

potential temperature after 3 months of an ensemble of back

trajectories started in a given longitude/latitude grid box. For

each bin the mean potential temperature variance (see Spar-

ling et al., 1997) is defined as

〈δθ2〉 = 〈(θ −〈θ〉)2〉, (1)

and hence measures the vertical spread of the trajectory en-

semble. Note that the integration over 3 months is longer

than is commonly done, in order to obtain a measure that can

be directly compared to the ozone predictions (which are also

initialised after 3 months).

Figure 6 shows the dispersion (a) and ozone (b) results for

a typical calculation where trajectories are started on 400K

on 20 November 2005. The figure shows the anomalies (after

subtraction of the mean value over the tropics) of the differ-

ences between kinematic and diabatic trajectory calculations.

This calculation eliminates mean biases in ozone and disper-

sion, and leaves only the spatial pattern in differences be-

tween the two calculations. The correspondence between the

dispersion and ozone anomalies is very good, with larger ver-

tical dispersion being positively correlated with larger ozone

concentrations. The region over Northern Australia where

the SCOUT-O3 campaign took place stands out as a region

of maximum differences in both vertical dispersion and pre-

dicted ozone between kinematic and diabatic transport. The

large difference in dispersion results partly from the large-

scale velocity patterns, showing mean ascent for diabatic and

mean subsidence for kinematic trajectories (compare Ploeger

et al., 2010, Fig. 6) and partly from the higher small-scale

noise in kinematic velocities (not shown). In the following,

we show that the correlation is robust, but that the geographi-

cal location of maxima vary with time, such that model com-

parisons with in-situ data as shown in Fig. 3b may give dif-

ferent results for different campaigns.

Figure 7 shows similar information for trajectory calcula-

tions started once per month in 2002, expressed as a corre-

lation plot. The x-axis is the kinematic–diabatic difference

in potential temperature variance (dispersion), while the y-

axis is the corresponding difference for water vapour (a) and

ozone (b). Each symbol represents one horizontal bin (as de-

fined in Fig. 6) for one month. The figure shows that for wa-

ter vapour no correlation is observed (correlation coefficient

r = −0.03), whereas for ozone the correlation between ozone

and dispersion differences is high, with correlation coeffi-

cient r = 0.84. The red symbols are the twelve monthly data
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Fig. 5. (a/b) Locations of backtrajectories in the latitude/potential temperature plane 60 days prior to the start time (left: diabatic; right:

kinematic), started on 400K potential temperature surface between ±20◦. End points of stratospheric trajectories are in black, of TST

trajectories (see text) in grey and the starting locations (400K) in green. The number f denotes the fraction of stratospheric (non-TST)

trajectories. (c/d) Same as (a/b), but for SCOUT-O3 trajectories.

points for the area over Northern Australia. This region has

always a high difference in ozone and dispersion, but is not

always the location of the maximum difference. Similarly,

the region of the maritime continent (green data points) is

also a region of a generally high difference although it is not

the case for the calculation for 20 November 2005 (Fig. 6).

5 Discussion

5.1 The difference between water vapour and ozone as

transport tracers

The higher sensitivity of ozone than water vapour to differ-

ences in transport as between ERA-Interim kinematic and

diabatic trajectories is primarily caused by the much larger

vertical and horizontal gradients of stratospheric ozone than

water vapour. With current tropospheric methane concen-

trations the maximum vertical increase in stratospheric wa-

ter vapour is about a doubling of water vapour entry mix-

ing ratios. Conversely, net ozone production maximises in

the tropical lower stratosphere, increasing ozone entry vol-

ume mixing ratios from about 100 ppbv by a factor 100 to

about 10 ppmv (parts per million by volume) around 10 hPa.

Consequently, even small differences in the initialisation po-

sitions and pathways of the stratospheric trajectory ensemble

have a large impact on predicted ozone, while they have only

a small impact on water vapour.

For the TST-ensemble, we find that both ozone and water

vapour are relatively insensitive to the choice of the trans-

port representation. For water vapour, the insensitivity arises

from the “loss of memory of initial conditions” as a trajectory

approaches the minimum saturation mixing ratios at the trop-

ical tropopause. The difference in the distribution of the posi-

tion of minimum saturation mixing ratios between kinematic

and diabatic ERA-Interim trajectories induces only minor

differences in model predicted entry mixing ratios (see also

Liu et al., 2010). In agreement with previous work (Krüger

et al., 2008) we find that the patterns of distribution of mini-

mum saturation mixing ratio of TST-trajectories (Bonazzola

and Haynes, 2004; Fueglistaler et al., 2005; Kremser et al.,

2009) are a robust feature of TST.

The model predictions of ozone for TST trajectories only

are insensitive to transport pathways, because for ERA-

Interim kinematic and diabatic trajectories the typical path-

ways and times to rise into the stratosphere are very similar

(compare Ploeger et al., 2010). Also the sensitivity to ini-

tial conditions is much smaller for ozone predictions from

TST than to predictions from stratospheric trajectories, be-

cause for TST the relative importance of integrated produc-

tion compared to passive transport is higher than for strato-

spheric trajectories.
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Fig. 6. Anomaly (from tropical mean) of kinematic-diabatic disper-

sion 〈δθ2〉 difference (a) and ozone difference (b) at 400K on 20

November 2005. Data is binned into 13◦×90◦ latitude-longitude

bins. Red/blue indicates positive/negative anomaly. Note that the

pattern varies with time (see also Fig. 7).

5.2 Mean transport and dispersion in the TTL and

lower stratosphere

Variations in tropical stratospheric upwelling are a direct

consequence of variations in the strength of the wave-driven

stratospheric circulation (Holton et al., 1995). Analysis of

the “atmospheric tape recorder signal” of tropical strato-

spheric water vapour (Mote et al., 1996) for estimates of up-

welling, and model validation is a standard practice (Mote

et al., 1998). Avallone and Prather (1996) showed that in

principle the same information can be obtained from the ver-

tical gradient in tropical lower stratospheric ozone. Randel

et al. (2007) and Konopka et al. (2009) further studied the

relation between upwelling and ozone, and the possible role

of horizontal, isentropic in-mixing.

Our results using the full 4-dimensional transport as rep-

resented by trajectories suggest that diabatic dispersion may

play a significant role for tropical lower stratospheric ozone

concentrations. Consequently, analyses based on a model of

the timescale of mean transport may be misleading as the

“tail” of the stratospheric age-of-air distribution may have a

.
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Fig. 7. (a) Correlation between difference in model predicted wa-

ter vapour and difference in dispersion (quantified from potential

temperature variance 〈δθ2〉, see text), with difference denoting the

difference between kinematic and diabatic backtrajectory calcula-

tions, started in the tropics on 400K potential temperature once

per month over the year 2002. Each symbol represents the wa-

ter vapour and dispersion difference for one grid box of 13◦×90◦

latitude/longitude (compare Fig. 6). (b) As (a) but for ozone.

Red/green data points in both panels refer to the grid box over

Northern Australia and the maritime continent region (see Fig. 6).

The correlation coefficient r is shown in each panel.

large influence on tropical lower stratospheric ozone mixing

ratios.

Figure 8 shows the tropical mean observed profiles and

the kinematic and diabatic model predictions using the ERA-

Interim ozone field as shown in Fig. 3c. The figure further

shows the profile of predicted ozone for the diabatic trajec-

tory calculations where the model diabatic heating rates were

multiplied with a factor 0.7. This procedure reduces to some

extent dispersion, but its main effect is a reduction in mean

upwelling by about 30% (see Liu et al., 2010). The figure

shows that the diabatic calculation with 30% reduced up-

welling gives an ozone profile that is virtually identical to

that of the kinematic calculation despite its much lower ver-

tical dispersion.
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ries (diabatic; diabatic with vertical velocity multiplied by a factor

0.7; kinematic), HALOE and SHADOZ observations.

Since neither true dispersion nor upwelling velocity in the

TTL are known exactly, it is not possible to precisely deduce

any one of the two parameters from ozone alone. Rather, it

may be that the combination of phase propagation of the wa-

ter vapour tape recorder signal with the annual cycle in ozone

concentrations allows one to determine both mean upwelling

and dispersion accurately. Such an analysis, however, is be-

yond the scope of the calculations used here based on rela-

tively short trajectory integration periods (in order to capture

the water vapour phase propagation, trajectories would have

to be started throughout the lower stratosphere and integrated

for much longer periods).

5.3 Constraints for the lower stratospheric circulation

Our analysis suggests that a combination of ozone and wa-

ter vapour may be able to constrain transport in the TTL and

lower stratosphere better than water vapour alone. In partic-

ular, the possibility that very deep convection overshooting

its level of neutral buoyancy induces a diabatic downwelling

over regions of intense convection (Sherwood, 2000) remains

a subject of interest that has not yet been conclusively re-

solved.

The calculations presented in this paper yield ambiguous

results with respect to this question. As emphasised through-

out this paper, due care should be taken when interpreting

absolute values of predicted ozone and water vapour concen-

trations. However, the following aspects are noteworthy in

this context.

The ERA-Interim vertical ω wind shows net downwelling

in particular regions of the equatorial stratosphere, as de-

picted in (Ploeger et al., 2010, Fig. 6) (but note that averaged

over the full tropics, the net motion is upward). It should

be kept in mind here, that these regions of negative vertical

velocities for kinematic trajectories (compare Ploeger et al.,

.

.

−20 0 20 40 60 80 100 120

O3−O3/init [%]

0

500

1000

1500

2000

fr
e

q
u

e
n

c
y
 o

f 
o

c
c
u

rr
e

n
c
e

       feb   
       aug   

(b)

0 2 4 6 8 10 12

O3/prod−O3 [%]

1000

2000

3000

4000

5000

fr
e

q
u

e
n

c
y
 o

f 
o

c
c
u

rr
e

n
c
e

       feb   
       aug   

.

(a)

Fig. 9. (a) Effect of chemical ozone loss, calculated from the differ-

ence between trajectory reconstructed ozone from photolytical pro-

duction only (O3/prod) and from both photolytical production and

HOx-loss, for February (black) and August (red), started at 400K

(see text). Frequency of occurrence for TST trajectories only is

shown as grey shaded/red dashed area for February/August. (b) Net

effect of chemistry, calculated as difference between trajectory re-

constructed and passively transported (initialisation, O3/init) ozone.

The bin size is 1% and 5% in (a) and (b), respectively. Black/red

dashed lines show the means of the distributions.

2010, Fig. 6) show cross-isentropic net downward motion

and not the mean vertical ω-wind, as explained in Sect. 4.

It is presently not clear why there is some downwelling and

it is, evidently, not clear whether this downwelling is real

or an artefact of the ERA-Interim assimilation procedure. In

any case, comparison between the kinematic and diabatic tra-

jectory calculations, with the vertical ω-wind field showing

downwelling and the diabatic heating in the same reanaly-

sis showing broad upwelling throughout the tropics, may al-

low some insight about the implications of downwelling on

ozone.

The model calculations based on diabatic trajectories and

initialised with HALOE have a general tendency to give a

profile that is low biased when compared to the HALOE
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tropical profile as well as the HALOE or FOZAN profiles

for the SCOUT-O3 campaign (Figs. 2b, 3b, c). Conversely,

the calculations initialised with HALOE and using kinematic

trajectories for transport yield good agreement for the trop-

ical mean ozone profile (Figs. 2b, 3c). However, for the

SCOUT-O3 campaign, where the largest impact from down-

welling would be expected because of the proximity to the

maritime continent region, the kinematic trajectories that in-

clude downwelling (Fig. 5b) yield a large high bias (Fig. 3b),

arguing against the occurrence of equatorial lower strato-

spheric downwelling.

Hence, the calculations presented here remain inconclu-

sive with respect to the particular problem whether there is

net upward or downward motion above the maritime conti-

nent. We anticipate progress if it were possible to constrain

the timescale of troposphere-to-stratosphere transport to bet-

ter than the ±30% required to bring ozone predictions of di-

abatic and kinematic trajectories into agreement (note that

from the water vapour tape recorder, ascent from tropopause

to about 10 hPa can be estimated fairly precisely, but not for

the region around the tropopause, see also Liu et al., 2010).

6 Conclusions

In this paper, we have combined 3-month backtrajectories

with a simple chemical model of ozone production, and of

dehydration. results for ozone are sensitive to initial con-

ditions. Due to some uncertainty in lower stratospheric

ozone concentrations (measurements from different sensors

and platforms differ on the order of 10–20%), we have re-

frained from interpreting absolute values of model predic-

tions. Rather, we have emphasised differences between

model calculations using kinematic and diabatic trajectories.

The results show that ozone is very sensitive to dispersion,

much more so than water vapour. A robust result is that the

larger the dispersion, the higher the model predicted ozone

concentration. Ozone concentrations are also sensitive to the

rate of diabatic ascent, and consequently there exists some

ambiguity between rate of ascent and small-scale mixing. It

is expected that this ambiguity also affects the conclusions

that can be drawn from a comparison of observed ozone and

that of Chemistry Climate Models. We expect that compar-

ison between observed and modelled ozone could provide

new constraints on transport in the TTL and lower strato-

sphere if it were possible to determine the timescale of ascent

across the TTL more accurately than currently published es-

timates.

Appendix A

Effect of production, loss and transport on ozone

We illustrate the effect of production, loss and transport

on backtrajectory predicted ozone in the upper TTL and

lower tropical stratosphere. In Fig. 9a the effect of chem-

ical loss 1O3(loss) is shown for diabatic February/August

(black/red) trajectories. Conclusions based on kinematic tra-

jectories are identical. The effect of chemical loss is calcu-

lated from the difference between reconstructed ozone with-

out chemical loss included, and reconstructed ozone (initial-

isation + production + loss). Figure 9a shows the frequency

of occurrence distribution of chemical loss for the Febru-

ary/August trajectory ensembles (black/red). The distribu-

tions for TST trajectories only are shown as grey (February)

and red (August) shadings. There is a short tail of the dis-

tributions at larger positive values, which is not present in

the TST distributions. Thus, chemical loss has a larger effect

on in-mixed (stratospheric trajectories) compared to tropical

(TST trajectories) air. However, the peaks are narrow and

centred near zero, showing that the additional effect of ozone

loss reactions, is negligible.

The net effect of chemistry 1O3(chem), calculated as

frequency of occurrence of the difference between recon-

structed ozone and passively transported ozone (initialisation

mixing ratios) for the same trajectory ensembles as above, is

shown in Fig. 9b. Obviously, for tropical air (TST) produc-

tion (net chemistry ≈ production, as seen above) strongly

modifies the initialisation values, in many cases by more that

50%. For in-mixed air (stratospheric trajectories; difference

between lines for all and for TST) production accounts for

only a few percent of the final mixing ratios, which therefore

almost equal the large stratospheric initialisation values.
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Krüger, K., Tegtmeier, S., and Rex, M.: Long-term climatology

of air mass transport through the Tropical Tropopause Layer

(TTL) during NH winter, Atmos. Chem. Phys., 8, 813–823,

doi:10.5194/acp-8-813-2008, 2008.

Legras, B., Joseph, B., and Lefevre, F.: Vertical diffusivity in

the lower stratosphere from Lagrangian back-trajectory recon-

structions of ozone profiles, J. Geophys. Res., 108, 4562, doi:

10.1029/2002JD003045, 2003.

Liu, S., Fueglistaler, S., and Haynes, P.: Advection-condensation

paradigm for stratospheric water vapor, J. Geophys. Res., 115,

D24307, doi:10.1029/2010JD014352, 2010.

McKenna, D. S., Grooß, J.-U., Günther, G., Konopka, P., Müller,

R., Carver, G., and Sasano, Y.: A new Chemical Lagrangian

Model of the Stratosphere (CLaMS): 2. Formulation of chem-

istry scheme and initialization, J. Geophys. Res., 107, 4256, doi:

10.1029/2000JD000113, 2002a.

McKenna, D. S., Konopka, P., Grooß, J.-U., Günther, G., Müller,

R., Spang, R., Offermann, D., and Orsolini, Y.: A new Chemical

Lagrangian Model of the Stratosphere (CLaMS): 1. Formulation

of advection and mixing, J. Geophys. Res., 107, 4309, doi:10.

1029/2000JD000114, 2002b.

Meier, R. R., Anderson, D. E., J., and Nicolet, M.: Radiation Field

in the Troposphere and Stratosphere from 240-1000 nm -I: Gen-

eral Analysis, Planet Space Sci, 30, 923–933, 1982.

Monge-Sanz, B. M., Chipperfield, M. P., Simmons, A. J., and Up-

pala, S. M.: Mean age of air and transport in a CTM: Comparison

of different ECMWF analyses, Geophys. Res. Lett., 34, L04801,

doi:10.1029/2006GL028515, 2007.

Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. S., Gille,

J. G., Holton, J. R., Kinnersley, J. S., Pumphrey, H. C., Russell

III, J. M., and Waters, J. W.: An atmospheric tape recorder: The

imprint of tropical tropopause temperatures on stratospheric wa-

ter vapor, J. Geophys. Res., 101, 3989–4006, 1996.

Atmos. Chem. Phys., 11, 407–419, 2011 www.atmos-chem-phys.net/11/407/2011/



F. Ploeger et al.: Transport validation using different tracers 419

Mote, P. W., Dunkerton, T. J., McIntyre, M. E., Ray, E. A., Haynes,

P. H., and Russell III, J. M.: Vertical velocity, vertical diffusion,

and dilution by midlatitude air in the tropical lower stratosphere,

J. Geophys. Res., 103, 8651–8666, 1998.

Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R.:

An objective determination of the polar vortex using Ertel’s po-

tential vorticity, J. Geophys. Res., 101, 9471–9478, 1996.

Osterman, G. B., Salawitch, R. J., Sen, B., Toon, G. C., Stach-

nik, R. A., Pickett, H. M., Margitan, J. J., and Peterson, D. B.:

Balloon-borne measurements of stratospheric radicals and their

precursors: Implications for the production and loss of ozone,

Geophys. Res. Lett., 24, 1107–1110, doi:10.1029/97GL00921,

1997.

Pisso, I. and Legras, B.: Turbulent vertical diffusivity in the

sub-tropical stratosphere, Atmos. Chem. Phys., 8, 697–707,

doi:10.5194/acp-8-697-2008, 2008.

Pisso, I., Marecal, V., Legras, B., and Berthet, G.: Sensitiv-

ity of ensemble Lagrangian reconstructions to assimilated wind

time step resolution, Atmos. Chem. Phys., 10, 3155–3162,

doi:10.5194/acp-10-3155-2010, 2010.

Ploeger, F., Konopka, P., Günther, G., Grooß, J.-U., and Müller,

R.: Impact of the vertical velocity scheme on modeling transport

in the tropical tropopause layer, J. Geophys. Res., 115, D03301,

doi:10.1029/2009JD012023, 2010.

Randel, W. J., Park, M., Wu, F., and Livesey, N.: A large annual cy-

cle in ozone above the tropical tropopause linked to the Brewer-

Dobson circulation, J. Atmos. Sci., 64, 4479–4488, 2007.

Russell, J. M., Gordley, L. L., Park, J. H., Drayson, S. R., Tuck,

A. F., Harries, J. E., Cicerone, R. J., Crutzen, P. J., and Frederick,

J. E.: The Halogen Occultation Experiment, J. Geophys. Res.,

98, 10777–10797, 1993.

Schiller, C., Grooß, J.-U., Konopka, P., Ploeger, F., dos San-

tos, F. H. S., and Spelten, N.: Hydration and dehydration at

the tropical tropopause, Atmos. Chem. Phys., 9, 9647–9660,

doi:10.5194/acp-9-9647-2009, 2009.

Schoeberl, M. R., Douglass, A. R., Zhu, Z. X., and Pawson, S.: A

comparison of the lower stratospheric age spectra derived from

a general circulation model and two data assimilation systems,

J. Geophys. Res., 108, 4113, doi:10.1029/2002JD002652, 2003.

Sherwood, S. C.: A stratospheric “drain” over the maritime conti-

nent, Geophys. Res. Lett., 27, 677–680, 2000.

Simmons, A., Uppala, S., Dee, S., and Kobayashi, S.: ERA-Interim:

New ECMWF reanalysis products from 1989 onwards, ECMWF

Newsletter, 110, 25–35, 2006.

Sparling, L. C., Kettleborough, J. A., Haynes, P. H., McIntyre,

M. E., Rosenfield, J. E., Schoeberl, M. R., and Newman, P. A.:

Diabatic cross-isentropic dispersion in the lower stratosphere,

J. Geophys. Res., 102, 25817–25829, 1997.

Thompson, A., Witte, J. C., Jacquelyn, C., Smit, H. G. J., Olt-

mans, S. J., Johnson, B. J., Kirchhoff, V. W. J. H., and

Schmidlin, F. J.: Southern Hemisphere Additional Ozoneson-

des (SHADOZ) 1998–2004 tropical ozone climatology: 3. In-

strumentation, station-to-station variability, and evaluation with

simulated flight profiles, J. Geophys. Res., 112, 3304, doi:

10.1029/2005JD007042, 2007.

Ulanosvky, A. E., Yushkov, V. A., Sitnikov, N. M., and Raveg-

nani, F.: The FOZAN-II fast-response chemiluminescent air-

borne ozone analyzer, Instrum. Exp. Tech., 44, 249–256, 2001.

Uppala, S., Dee, S., Kobayashi, S., Berrisford, P., and Simmons,

A.: Towards a climate data assimilation system: status update of

ERA-Interim, ECMWF Newsletter, 115, 12–18, 2008.

Waugh, D. W. and Hall, T. M.: Age of stratospheric air: Theory,

observations, and models, Rev. Geophys., 40, 1–27, 2002.

Wennberg, P. O., F., H. T., Jaegle, L., Jacob, D. J., Hintsa, E. J.,

Lanzendorf, E. J., Anderson, J. G., Gao, R. S., Keim, E. R., Don-

nelly, S. G., Del Negro, L. A., Fahey, D. W., McKeen, S. A.,

Salawitch, R. J., Webster, C. R., May, R. D., Herman, R. L.,

Proffitt, M. H., Margitan, J. J., Atlas, E. L., Schauffler, S. M.,

Flocke, F., McElroy, C. T., and Bui, T. P.: Hydrogen radicals,

nitrogen radicals, and the production of O3 in the upper tropo-

sphere, Science, 266, 49–53, 1998.

Wohltmann, I. and Rex, M.: Improvement of vertical and resid-

ual velocities in pressure or hybrid sigma-pressure coordinates

in analysis data in the stratosphere, Atmos. Chem. Phys., 8, 265–

272, doi:10.5194/acp-8-265-2008, 2008.
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