001     13867
005     20240708132819.0
024 7 _ |2 DOI
|a 10.1115/1.4002209
024 7 _ |2 WOS
|a WOS:000283739400003
037 _ _ |a PreJuSER-13867
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Mechanics
100 1 _ |0 P:(DE-HGF)0
|a Limarga, A.M.
|b 0
245 _ _ |a Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings Under Thermal Cycling in a Temperature Gradient
260 _ _ |a New York, NY
|b ASME
|c 2011
300 _ _ |a 1 - 9
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 23541
|a Journal of Applied Mechanics - TRANSACTIONS OF THE ASME
|v 78
|x 0021-8936
|y 1
500 _ _ |a This work is supported by the Office of Naval Research, Contract No. N00014-09-1068. The authors are grateful for fruitful discussion with the late Prof. A.G. Evans (UCSB) and Prof. J.W. Hutchinson (Harvard University).
520 _ _ |a The residual stress distribution in plasma-sprayed zirconia thermal barrier coatings subjected to cyclic thermal gradient testing was evaluated using Raman piezospectroscopy and finite element computation. The thermal gradient testing (approximately 440 degrees C/mm at temperature), consisted of repeated front-side heating with a flame and constant cooling of the back-side of the substrate either with front-side radiative cooling only or with additional forced air cooling between the heating cycles. The coatings exhibited characteristic "mud-cracking" with the average crack spacing dependent on the cooling treatment. This is consistent with finite element calculations and Raman spectroscopy measurements in which the sudden drop in coating surface temperature on initial cooling leads to a large biaxial tension at the surface. The key to proper interpretation of the Raman shifts is that the stress-free Raman peaks need to be corrected for shifts associated with the evolution of the metastable tetragonal phase with aging. [DOI: 10.1115/1.4002209]
536 _ _ |0 G:(DE-Juel1)FUEK402
|2 G:(DE-HGF)
|a Rationelle Energieumwandlung
|c P12
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a thermal barrier coating
653 2 0 |2 Author
|a Raman piezospectroscopy
653 2 0 |2 Author
|a residual stress
653 2 0 |2 Author
|a thermal gradient
700 1 _ |0 P:(DE-Juel1)129670
|a Vaßen, R.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Clarke, D.R.
|b 2
773 _ _ |0 PERI:(DE-600)2021620-8
|a 10.1115/1.4002209
|g Vol. 78, p. 1 - 9
|p 1 - 9
|q 78<1 - 9
|t Journal of applied mechanics
|v 78
|x 0021-8936
|y 2011
856 7 _ |u http://dx.doi.org/10.1115/1.4002209
909 C O |o oai:juser.fz-juelich.de:13867
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK402
|a DE-HGF
|b Energie
|k P12
|l Rationelle Energieumwandlung
|v Rationelle Energieumwandlung
|x 0
913 2 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0020
|a No peer review
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|g IEK
|k IEK-1
|l Werkstoffsynthese und Herstellverfahren
|x 0
970 _ _ |a VDB:(DE-Juel1)125601
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21