000138683 001__ 138683
000138683 005__ 20210129212333.0
000138683 0247_ $$2doi$$a10.1117/12.2021863
000138683 0247_ $$2WOS$$aWOS:000326598900051
000138683 0247_ $$2altmetric$$aaltmetric:2001894
000138683 037__ $$aFZJ-2013-04773
000138683 1001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b0$$ufzj
000138683 1112_ $$aSPIE Optical Engineering + Applications$$cSan Diego$$d2013-08-26 - 2013-08-29$$wCalifornia
000138683 245__ $$aEvent-by-event simulation of experiments to create entanglement and violate Bell inequalities
000138683 260__ $$c2013
000138683 29510 $$aProc. of SPIE
000138683 300__ $$a88321M-1 - 88321M-16
000138683 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1384770894_17439
000138683 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000138683 3367_ $$033$$2EndNote$$aConference Paper
000138683 3367_ $$2ORCID$$aCONFERENCE_PAPER
000138683 3367_ $$2DataCite$$aOutput Types/Conference Paper
000138683 3367_ $$2DRIVER$$aconferenceObject
000138683 3367_ $$2BibTeX$$aINPROCEEDINGS
000138683 520__ $$aWe discuss a discrete-event, particle-based simulation approach which reproduces the statistical distributions of Maxwell’s theory and quantum theory by generating detection events one-by-one. This event-based approach gives a unified causeand- effect description of quantum optics experiments such as single-photon Mach-Zehnder interferometer, Wheeler’s delayed choice, quantum eraser, double-slit, Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss experiments, and various neutron interferometry experiments. We illustrate the approach by application to single-photon Einstein-Podolsky- Rosen-Bohm experiments and single-neutron interferometry experiments that violate a Bell inequality.
000138683 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000138683 588__ $$aDataset connected to CrossRef Conference
000138683 7001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b1
000138683 770__ $$aThe Nature of Light: What are Photons? V
000138683 773__ $$a10.1117/12.2021863$$p88321M$$v8832
000138683 909CO $$ooai:juser.fz-juelich.de:138683$$pVDB
000138683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000138683 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000138683 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000138683 9141_ $$y2013
000138683 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000138683 980__ $$acontrib
000138683 980__ $$aVDB
000138683 980__ $$aUNRESTRICTED
000138683 980__ $$acontb
000138683 980__ $$aI:(DE-Juel1)JSC-20090406