000138687 001__ 138687
000138687 005__ 20210129212334.0
000138687 0247_ $$2doi$$a10.1117/12.2026998
000138687 0247_ $$2WOS$$aWOS:000326598900033
000138687 037__ $$aFZJ-2013-04775
000138687 1001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b0
000138687 1112_ $$aSPIE Optical Engineering + Applications$$cSan Diego$$d2013-08-26 - 2013-08-29$$wCalifornia
000138687 245__ $$aQuantum theory as the most robust description of reproducible experiments: application to a rigid linear rotator
000138687 260__ $$c2013
000138687 29510 $$aProc. of SPIE
000138687 300__ $$a883212-1 - 883212-11
000138687 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a book$$bcontrib$$mcontrib$$s1384770979_17437
000138687 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000138687 3367_ $$033$$2EndNote$$aConference Paper
000138687 3367_ $$2ORCID$$aCONFERENCE_PAPER
000138687 3367_ $$2DataCite$$aOutput Types/Conference Paper
000138687 3367_ $$2DRIVER$$aconferenceObject
000138687 3367_ $$2BibTeX$$aINPROCEEDINGS
000138687 520__ $$aIt is shown that the Schrödinger equation of a rigid linear rotator can be obtained from a straightforward application of logical inference, providing another illustration that basic equations of quantum theory follow from inductive inference, applied to experiments for which there is uncertainty about individual events and for which the frequencies of the observed events are robust with respect to small changes in the conditions under which the experiments are carried out.
000138687 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000138687 588__ $$aDataset connected to CrossRef Conference
000138687 7001_ $$0P:(DE-HGF)0$$aKatsnelson, M. I.$$b1
000138687 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b2$$ufzj
000138687 770__ $$aThe Nature of Light: What are Photons? V
000138687 773__ $$a10.1117/12.2026998$$p883212$$v8832
000138687 909CO $$ooai:juser.fz-juelich.de:138687$$pVDB
000138687 9141_ $$y2013
000138687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000138687 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000138687 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000138687 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000138687 980__ $$acontrib
000138687 980__ $$aVDB
000138687 980__ $$aUNRESTRICTED
000138687 980__ $$acontb
000138687 980__ $$aI:(DE-Juel1)JSC-20090406