001     138687
005     20210129212334.0
024 7 _ |a 10.1117/12.2026998
|2 doi
024 7 _ |a WOS:000326598900033
|2 WOS
037 _ _ |a FZJ-2013-04775
100 1 _ |a De Raedt, Hans
|0 P:(DE-HGF)0
|b 0
111 2 _ |a SPIE Optical Engineering + Applications
|c San Diego
|d 2013-08-26 - 2013-08-29
|w California
245 _ _ |a Quantum theory as the most robust description of reproducible experiments: application to a rigid linear rotator
260 _ _ |c 2013
295 1 0 |a Proc. of SPIE
300 _ _ |a 883212-1 - 883212-11
336 7 _ |a Contribution to a book
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1384770979_17437
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a It is shown that the Schrödinger equation of a rigid linear rotator can be obtained from a straightforward application of logical inference, providing another illustration that basic equations of quantum theory follow from inductive inference, applied to experiments for which there is uncertainty about individual events and for which the frequencies of the observed events are robust with respect to small changes in the conditions under which the experiments are carried out.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Katsnelson, M. I.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Michielsen, K.
|0 P:(DE-Juel1)138295
|b 2
|u fzj
770 _ _ |a The Nature of Light: What are Photons? V
773 _ _ |a 10.1117/12.2026998
|p 883212
|v 8832
909 C O |o oai:juser.fz-juelich.de:138687
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138295
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21