000138712 001__ 138712
000138712 005__ 20240610120517.0
000138712 0247_ $$2doi$$a10.1016/j.jcrysgro.2012.09.059
000138712 0247_ $$2ISSN$$a1873-5002
000138712 0247_ $$2ISSN$$a0022-0248
000138712 0247_ $$2WOS$$aWOS:000317271000031
000138712 037__ $$aFZJ-2013-04799
000138712 082__ $$a540
000138712 1001_ $$0P:(DE-Juel1)128635$$aSladek, Kamil$$b0$$eCorresponding author
000138712 1112_ $$a16th International Conference on Metalorganic Vapor Phase Epitaxy
000138712 245__ $$aFrom conformal overgrowth to lateral growth of indium arsenide nano structures on silicon substrates by MOVPE
000138712 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2013
000138712 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1392727105_30880
000138712 3367_ $$2DataCite$$aOutput Types/Journal article
000138712 3367_ $$00$$2EndNote$$aJournal Article
000138712 3367_ $$2BibTeX$$aARTICLE
000138712 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138712 3367_ $$2DRIVER$$aarticle
000138712 500__ $$3POF3_Assignment on 2016-02-29
000138712 520__ $$aA methodology for the deposition of lateral InAs nanostructures on silicon by selective area metal organic vapor phase epitaxy (SA-MOVPE) is presented. Growth parameters which are optimal for the SA-MOVPE of conformal InAs overgrowth on GaAs nanowires were transferred to the lateral SA growth of InAs structures on patterned silicon substrates. The substrate pretreatment conditions and growth parameters were further optimized with respect to selectivity and nanostructure morphology. It is found that lateral growth of InAs nano structures can be achieved on patterned Si(110) as well as on patterned silicon on insulator (SOI) substrates. An investigation of the laterally grown InAs/Si nanowires' crystal structure revealed a faceted but nevertheless abrupt Si–InAs interface on the Si(110) substrate as well as relaxation and a high crystallinity of the deposited InAs on both Si template types. The morphology and crystallinity of laterally grown structures are discussed in detail and compared to that of vertical shell/core InAs/GaAs nanowires.
000138712 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000138712 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x1
000138712 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000138712 7001_ $$0P:(DE-Juel1)140174$$aHaas, Fabian$$b1
000138712 7001_ $$0P:(DE-HGF)0$$aHeidelmann,$$b2
000138712 7001_ $$0P:(DE-HGF)0$$aPark, Daesung$$b3
000138712 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b4$$ufzj
000138712 7001_ $$0P:(DE-HGF)0$$aDorn, Falk$$b5
000138712 7001_ $$0P:(DE-HGF)0$$aWeirich, Thomas E.$$b6
000138712 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7
000138712 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b8
000138712 773__ $$0PERI:(DE-600)1466514-1$$a10.1016/j.jcrysgro.2012.09.059$$gVol. 370, p. 141 - 145$$p141 - 145$$tJournal of crystal growth$$v370$$x0022-0248$$y2013
000138712 8564_ $$zPublished final document.
000138712 8564_ $$uhttps://juser.fz-juelich.de/record/138712/files/FZJ-2013-04799_PV.pdf$$yRestricted$$zPublished final document.
000138712 909__ $$ooai:juser.fz-juelich.de:138712$$pVDB
000138712 909CO $$ooai:juser.fz-juelich.de:138712$$pVDB
000138712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128635$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000138712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140174$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000138712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000138712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000138712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000138712 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000138712 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000138712 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x1
000138712 9141_ $$y2013
000138712 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000138712 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138712 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138712 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138712 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138712 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138712 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138712 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138712 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000138712 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000138712 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000138712 920__ $$lyes
000138712 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000138712 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000138712 980__ $$ajournal
000138712 980__ $$aVDB
000138712 980__ $$aUNRESTRICTED
000138712 980__ $$aI:(DE-Juel1)PGI-9-20110106
000138712 980__ $$aI:(DE-Juel1)PGI-5-20110106
000138712 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000138712 981__ $$aI:(DE-Juel1)PGI-5-20110106