000138713 001__ 138713
000138713 005__ 20210129212339.0
000138713 0247_ $$2doi$$a10.1088/0957-4484/24/3/035203
000138713 0247_ $$2ISSN$$a1361-6528
000138713 0247_ $$2ISSN$$a0957-4484
000138713 0247_ $$2WOS$$aWOS:000312672700006
000138713 037__ $$aFZJ-2013-04800
000138713 082__ $$a530
000138713 1001_ $$0P:(DE-Juel1)125566$$aBlömers, C$$b0$$eCorresponding author
000138713 245__ $$aRealization of nanoscaled tubular conductors by means of GaAs/InAs core/shell nanowires
000138713 260__ $$aBristol$$bIOP Publ.$$c2013
000138713 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1392726978_30878
000138713 3367_ $$2DataCite$$aOutput Types/Journal article
000138713 3367_ $$00$$2EndNote$$aJournal Article
000138713 3367_ $$2BibTeX$$aARTICLE
000138713 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138713 3367_ $$2DRIVER$$aarticle
000138713 500__ $$3POF3_Assignment on 2016-02-29
000138713 520__ $$aWe investigated the transport properties of GaAs/InAs core/shell nanowires grown by molecular beam epitaxy. Owing to the band alignment between GaAs and InAs, electrons are accumulated in the InAs shell as long as the shell thickness exceeds 12 nm. By performing simulations using a Schrödinger–Poisson solver, it is confirmed that confined states are present in the InAs shell, which are depleted if the shell thickness is below a threshold value. The existence of a tubular-shaped conductor is proved by performing magnetoconductance measurements at low temperatures. Here, flux periodic conductance oscillations are observed which can be attributed to transport in one-dimensional channels based on angular momentum states.
000138713 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000138713 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000138713 7001_ $$0P:(DE-Juel1)141766$$aRieger, T$$b1
000138713 7001_ $$0P:(DE-Juel1)145960$$aZellekens, P$$b2
000138713 7001_ $$0P:(DE-Juel1)140174$$aHaas, F$$b3
000138713 7001_ $$0P:(DE-Juel1)128603$$aLepsa, M I$$b4
000138713 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, H$$b5
000138713 7001_ $$0P:(DE-HGF)0$$aGül, ö$$b6
000138713 7001_ $$0P:(DE-Juel1)125576$$aDemarina, Nataliya$$b7$$ufzj
000138713 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D$$b8
000138713 7001_ $$0P:(DE-Juel1)128608$$aLüth, H$$b9
000138713 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b10$$ufzj
000138713 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/24/3/035203$$gVol. 24, no. 3, p. 035203 -$$n3$$p035203 $$tNanotechnology$$v24$$x1361-6528$$y2013
000138713 8564_ $$zPublished final document.
000138713 8564_ $$uhttps://juser.fz-juelich.de/record/138713/files/FZJ-2013-04800_PV.pdf$$yRestricted$$zPublished final document.
000138713 909__ $$ooai:juser.fz-juelich.de:138713$$pVDB
000138713 909CO $$ooai:juser.fz-juelich.de:138713$$pVDB
000138713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125566$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000138713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141766$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000138713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145960$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000138713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140174$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000138713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000138713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000138713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125576$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000138713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000138713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000138713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000138713 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000138713 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000138713 9141_ $$y2013
000138713 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000138713 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138713 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138713 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138713 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138713 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138713 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138713 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138713 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000138713 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000138713 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000138713 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000138713 920__ $$lyes
000138713 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000138713 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000138713 980__ $$ajournal
000138713 980__ $$aVDB
000138713 980__ $$aUNRESTRICTED
000138713 980__ $$aI:(DE-Juel1)PGI-9-20110106
000138713 980__ $$aI:(DE-82)080009_20140620