Home > Publications database > Realization of nanoscaled tubular conductors by means of GaAs/InAs core/shell nanowires > print |
001 | 138713 | ||
005 | 20210129212339.0 | ||
024 | 7 | _ | |a 10.1088/0957-4484/24/3/035203 |2 doi |
024 | 7 | _ | |a 1361-6528 |2 ISSN |
024 | 7 | _ | |a 0957-4484 |2 ISSN |
024 | 7 | _ | |2 WOS |a WOS:000312672700006 |
037 | _ | _ | |a FZJ-2013-04800 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Blömers, C |0 P:(DE-Juel1)125566 |b 0 |e Corresponding author |
245 | _ | _ | |a Realization of nanoscaled tubular conductors by means of GaAs/InAs core/shell nanowires |
260 | _ | _ | |a Bristol |c 2013 |b IOP Publ. |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1392726978_30878 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
520 | _ | _ | |a We investigated the transport properties of GaAs/InAs core/shell nanowires grown by molecular beam epitaxy. Owing to the band alignment between GaAs and InAs, electrons are accumulated in the InAs shell as long as the shell thickness exceeds 12 nm. By performing simulations using a Schrödinger–Poisson solver, it is confirmed that confined states are present in the InAs shell, which are depleted if the shell thickness is below a threshold value. The existence of a tubular-shaped conductor is proved by performing magnetoconductance measurements at low temperatures. Here, flux periodic conductance oscillations are observed which can be attributed to transport in one-dimensional channels based on angular momentum states. |
536 | _ | _ | |a 422 - Spin-based and quantum information (POF2-422) |0 G:(DE-HGF)POF2-422 |c POF2-422 |x 0 |f POF II |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Rieger, T |0 P:(DE-Juel1)141766 |b 1 |
700 | 1 | _ | |a Zellekens, P |0 P:(DE-Juel1)145960 |b 2 |
700 | 1 | _ | |a Haas, F |0 P:(DE-Juel1)140174 |b 3 |
700 | 1 | _ | |a Lepsa, M I |0 P:(DE-Juel1)128603 |b 4 |
700 | 1 | _ | |a Hardtdegen, H |0 P:(DE-Juel1)125593 |b 5 |
700 | 1 | _ | |a Gül, ö |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Demarina, Nataliya |0 P:(DE-Juel1)125576 |b 7 |u fzj |
700 | 1 | _ | |a Grützmacher, D |0 P:(DE-Juel1)125588 |b 8 |
700 | 1 | _ | |a Lüth, H |0 P:(DE-Juel1)128608 |b 9 |
700 | 1 | _ | |a Schäpers, Thomas |0 P:(DE-Juel1)128634 |b 10 |u fzj |
773 | _ | _ | |a 10.1088/0957-4484/24/3/035203 |g Vol. 24, no. 3, p. 035203 - |p 035203 |n 3 |0 PERI:(DE-600)1362365-5 |t Nanotechnology |v 24 |y 2013 |x 1361-6528 |
856 | 4 | _ | |z Published final document. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/138713/files/FZJ-2013-04800_PV.pdf |z Published final document. |y Restricted |
909 | _ | _ | |p VDB |o oai:juser.fz-juelich.de:138713 |
909 | C | O | |o oai:juser.fz-juelich.de:138713 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)125566 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)141766 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145960 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)140174 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128603 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)125593 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)125576 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)128608 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)128634 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-422 |2 G:(DE-HGF)POF2-400 |v Spin-based and quantum information |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
914 | 1 | _ | |y 2013 |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|