000138715 001__ 138715
000138715 005__ 20210129212340.0
000138715 0247_ $$2doi$$a10.1134/S1063776112110131
000138715 0247_ $$2ISSN$$a1090-6509
000138715 0247_ $$2ISSN$$a1063-7761
000138715 0247_ $$2WOS$$aWOS:000313068000014
000138715 037__ $$aFZJ-2013-04802
000138715 082__ $$a530
000138715 1001_ $$0P:(DE-HGF)0$$aZhukov, A. A.$$b0$$eCorresponding author
000138715 245__ $$aNegative differential conductance in InAs wire based double quantum dot induced by a charged AFM tip
000138715 260__ $$aHeidelberg [u.a.]$$bSpringer$$c2012
000138715 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1385029774_32293
000138715 3367_ $$2DataCite$$aOutput Types/Journal article
000138715 3367_ $$00$$2EndNote$$aJournal Article
000138715 3367_ $$2BibTeX$$aARTICLE
000138715 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138715 3367_ $$2DRIVER$$aarticle
000138715 500__ $$3POF3_Assignment on 2016-02-29
000138715 520__ $$aWe investigate the conductance of an InAs nanowire in the nonlinear regime in the case of low electron density where the wire is split into quantum dots connected in series. The negative differential conductance in the wire is initiated by means of a charged atomic force microscope tip adjusting the transparency of the tunneling barrier between two adjoining quantum dots. We confirm that the negative differential conductance arises due to the resonant tunneling between these two adjoining quantum dots. The influence of the transparency of the blocking barriers and the relative position of energy states in the adjoining dots on a decrease of the negative differential conductance is investigated in detail.
000138715 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000138715 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000138715 7001_ $$0P:(DE-Juel1)128643$$aVolk, Ch.$$b1$$ufzj
000138715 7001_ $$0P:(DE-Juel1)144014$$aWinden, A.$$b2$$ufzj
000138715 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, H.$$b3$$ufzj
000138715 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Th.$$b4$$ufzj
000138715 773__ $$0PERI:(DE-600)1472441-8$$a10.1134/S1063776112110131$$gVol. 115, no. 6, p. 1062 - 1067$$n6$$p1062 - 1067$$tJournal of experimental and theoretical physics$$v115$$x1090-6509$$y2012
000138715 8564_ $$uhttps://juser.fz-juelich.de/record/138715/files/FZJ-2013-04802_PV.pdf$$yRestricted$$zPublished final document.
000138715 909CO $$ooai:juser.fz-juelich.de:138715$$pVDB
000138715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128643$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000138715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144014$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000138715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000138715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000138715 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000138715 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000138715 9141_ $$y2013
000138715 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000138715 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138715 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138715 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138715 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138715 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138715 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138715 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000138715 920__ $$lyes
000138715 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000138715 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000138715 980__ $$ajournal
000138715 980__ $$aVDB
000138715 980__ $$aUNRESTRICTED
000138715 980__ $$aI:(DE-Juel1)PGI-9-20110106
000138715 980__ $$aI:(DE-82)080009_20140620