000138719 001__ 138719
000138719 005__ 20210129212341.0
000138719 0247_ $$2doi$$a10.1002/pssa.201100478
000138719 0247_ $$2ISSN$$a1862-6319
000138719 0247_ $$2ISSN$$a0031-8965
000138719 0247_ $$2ISSN$$a1862-6300
000138719 0247_ $$2ISSN$$a1521-396X
000138719 0247_ $$2WOS$$aWOS:000303383900008
000138719 037__ $$aFZJ-2013-04806
000138719 082__ $$a530
000138719 1001_ $$0P:(DE-Juel1)141986$$aHaab, Anna$$b0$$eCorresponding author$$ufzj
000138719 245__ $$aSelf-assembled GaN nanostructures by dry etching and their optical properties
000138719 260__ $$aWeinheim$$bWiley-VCH$$c2012
000138719 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1392726368_30882
000138719 3367_ $$2DataCite$$aOutput Types/Journal article
000138719 3367_ $$00$$2EndNote$$aJournal Article
000138719 3367_ $$2BibTeX$$aARTICLE
000138719 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138719 3367_ $$2DRIVER$$aarticle
000138719 500__ $$3POF3_Assignment on 2016-02-29
000138719 520__ $$aThe influence of process parameters and template characteristics on the morphology and optical properties of self-assembled nanostructures produced by dry etching from GaN/sapphire templates was investigated. It was found that the chemical component in the etching gas–chlorine supports the formation of nanostructures and that a minimum amount of RF and ICP power (i.e., energy) is necessary. Additionally the crystalline imperfection and the doping concentration of the template greatly affect the nanostructure morphology. All nanostructures exhibit higher luminescence intensity than the templates they are fabricated from and exhibit a red-shift of the luminescence with respect to the epilayer. The results indicate effective strain relaxation as well as more efficient absorption of the incoming photons the smaller the nanostructures become.
000138719 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000138719 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000138719 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b1$$ufzj
000138719 7001_ $$0P:(DE-Juel1)144014$$aWinden, Andreas$$b2$$ufzj
000138719 7001_ $$0P:(DE-Juel1)144360$$aVoigt, Sally$$b3$$ufzj
000138719 7001_ $$0P:(DE-Juel1)128650$$avon der Ahe, Martina$$b4$$ufzj
000138719 7001_ $$0P:(DE-Juel1)128616$$aMoers, Jürgen$$b5$$ufzj
000138719 7001_ $$0P:(DE-Juel1)128647$$aWirtz, Konrad$$b6$$ufzj
000138719 7001_ $$0P:(DE-Juel1)128637$$aStoica, Toma$$b7$$ufzj
000138719 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b8$$ufzj
000138719 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b9$$ufzj
000138719 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.201100478$$gVol. 209, no. 3, p. 443 - 446$$n3$$p443 - 446$$tPhysica status solidi / A$$v209$$x1862-6300$$y2012
000138719 8564_ $$zPublished final document.
000138719 8564_ $$uhttps://juser.fz-juelich.de/record/138719/files/FZJ-2013-04806_PV.pdf$$yRestricted$$zPublished final document.
000138719 909__ $$ooai:juser.fz-juelich.de:138719$$pVDB
000138719 909CO $$ooai:juser.fz-juelich.de:138719$$pVDB
000138719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141986$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000138719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000138719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144014$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000138719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144360$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000138719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128650$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000138719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128616$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000138719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128647$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000138719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128637$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000138719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000138719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000138719 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000138719 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000138719 9141_ $$y2013
000138719 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000138719 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138719 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138719 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138719 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138719 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138719 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138719 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138719 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000138719 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000138719 920__ $$lyes
000138719 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000138719 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000138719 980__ $$ajournal
000138719 980__ $$aVDB
000138719 980__ $$aUNRESTRICTED
000138719 980__ $$aI:(DE-Juel1)PGI-9-20110106
000138719 980__ $$aI:(DE-82)080009_20140620