000138720 001__ 138720
000138720 005__ 20210129212341.0
000138720 0247_ $$2doi$$a10.1002/pssc.201100282
000138720 0247_ $$2ISSN$$a1862-6351
000138720 0247_ $$2ISSN$$a1610-1642
000138720 0247_ $$2ISSN$$a1610-1634
000138720 0247_ $$2WOS$$aWOS:000301540900019
000138720 037__ $$aFZJ-2013-04807
000138720 082__ $$a530
000138720 1001_ $$0P:(DE-Juel1)128635$$aSladek, Kamil$$b0$$eCorresponding author$$ufzj
000138720 1112_ $$a38th International Symposium on Compound Semiconductors (ISCS)$$cBerlin$$d2011-05-22 - 2011-05-26$$gISCS$$wGermany
000138720 245__ $$aComparison of InAs nanowire conductivity: influence of growth method and structure
000138720 260__ $$aBerlin$$bWiley-VCH$$c2012
000138720 300__ $$a230-234
000138720 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1392726175_30878
000138720 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000138720 3367_ $$033$$2EndNote$$aConference Paper
000138720 3367_ $$2ORCID$$aCONFERENCE_PAPER
000138720 3367_ $$2DataCite$$aOutput Types/Conference Paper
000138720 3367_ $$2DRIVER$$aconferenceObject
000138720 3367_ $$2BibTeX$$aINPROCEEDINGS
000138720 500__ $$3POF3_Assignment on 2016-02-29
000138720 520__ $$aThe conductivity and crystal structure of nominally undoped InAs nanowires deposited by three different methods – 1. selective area metal organic vapor phase epitaxy (SA MOVPE), 2. gold assisted vapor liquid solid (VLS) MOVPE and 3. extrinsic catalyst free VLS molecular beam epitaxy (MBE) – is investigated. The influence on conductivity by stacking faults and different growth conditions is analyzed to determine the main impact. It is found that in terms of crystal structure, nanowires deposited by VLS MOVPE and VLS MBE behave similarly showing a zinc blende (ZB) phase while nanowires deposited by SA MOVPE feature a high density of stacking faults and a tendency to higher amounts of wurtzite (WZ) when grown with a decreased growth rate. However, the conductivity of wires deposited by VLS MOVPE is found to be much higher and statistically less dispersive compared to the other two wire types. An electrical similarity between nominally undoped wires in VLS MOVPE and previously reported intentionally doped wires in SA MOVPE is observed and discussed. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
000138720 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000138720 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000138720 7001_ $$0P:(DE-Juel1)144014$$aWinden, Andreas$$b1$$ufzj
000138720 7001_ $$0P:(DE-Juel1)138778$$aWirths, Stephan$$b2$$ufzj
000138720 7001_ $$0P:(DE-Juel1)128645$$aWeis, Karl$$b3$$ufzj
000138720 7001_ $$0P:(DE-Juel1)125566$$aBlömers, Christian$$b4$$ufzj
000138720 7001_ $$0P:(DE-HGF)0$$aGül, Önder$$b5
000138720 7001_ $$0P:(DE-HGF)0$$aGrap, Thomas$$b6
000138720 7001_ $$0P:(DE-Juel1)128602$$aLenk, Steffi$$b7$$ufzj
000138720 7001_ $$0P:(DE-Juel1)128650$$avon der Ahe, Martina$$b8$$ufzj
000138720 7001_ $$0P:(DE-HGF)0$$aWeirich, Thomas E.$$b9
000138720 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b10$$ufzj
000138720 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b11$$ufzj
000138720 7001_ $$0P:(DE-HGF)0$$aLysov, Andrey$$b12
000138720 7001_ $$0P:(DE-HGF)0$$aLi, Zi-An$$b13
000138720 7001_ $$0P:(DE-HGF)0$$aProst, Werner$$b14
000138720 7001_ $$0P:(DE-HGF)0$$aTegude, Franz-Josef$$b15
000138720 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b16$$ufzj
000138720 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b17$$ufzj
000138720 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b18$$ufzj
000138720 773__ $$0PERI:(DE-600)2102966-0$$a10.1002/pssc.201100282$$gVol. 9, no. 2, p. 230 - 234$$n2$$p230 - 234$$tPhysica status solidi / C$$v9$$x1862-6351$$y2012
000138720 909__ $$ooai:juser.fz-juelich.de:138720$$pVDB
000138720 909CO $$ooai:juser.fz-juelich.de:138720$$pVDB
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128635$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144014$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138778$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128645$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125566$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128602$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128650$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich GmbH$$b16$$kFZJ
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b17$$kFZJ
000138720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b18$$kFZJ
000138720 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000138720 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000138720 9141_ $$y2013
000138720 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review
000138720 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138720 920__ $$lyes
000138720 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000138720 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000138720 980__ $$acontrib
000138720 980__ $$aVDB
000138720 980__ $$aUNRESTRICTED
000138720 980__ $$ajournal
000138720 980__ $$aI:(DE-Juel1)PGI-9-20110106
000138720 980__ $$aI:(DE-82)080009_20140620