000138736 001__ 138736
000138736 005__ 20250129094335.0
000138736 0247_ $$2Handle$$a2128/5471
000138736 0247_ $$2ISSN$$a1866-1807
000138736 020__ $$a978-3-89336-921-8
000138736 037__ $$aFZJ-2013-04820
000138736 041__ $$aEnglish
000138736 1001_ $$0P:(DE-Juel1)130901$$aPrice, Stephen$$b0$$eCorresponding author$$gmale$$ufzj
000138736 245__ $$aInterplay between magnetism and superconductivity in iron based high temperature superconductors$$f2013-08-14
000138736 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2013
000138736 300__ $$a196 S.
000138736 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s138736
000138736 3367_ $$02$$2EndNote$$aThesis
000138736 3367_ $$2DRIVER$$adoctoralThesis
000138736 3367_ $$2BibTeX$$aPHDTHESIS
000138736 3367_ $$2DataCite$$aOutput Types/Dissertation
000138736 3367_ $$2ORCID$$aDISSERTATION
000138736 4900_ $$0PERI:(DE-600)2445293-2$$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v77
000138736 502__ $$aRWTH Aachen, Diss., 2013$$bDr.$$cRWTH Aachen$$d2013
000138736 500__ $$3POF3_Assignment on 2016-02-29
000138736 520__ $$aIn this thesis, magnetic properties of a series of different Fe-based superconducting materials have been studied by means of neutron scattering techniques. Magnetic correlations in underdoped Ba(Fe$_{0.95}$Co$_{0.05}$)$_{2}$As$_{2}$ have been investigated for three phases of the phase diagram. It was possible to detect the spin gap and spin resonance signal, two features of the particle hole excitation spectrum at Q=(0.5, 0.5, 0), characteristic for the superconducting phase. The spin wave excitations present in the ordered phase have been analyzed quantitatively in terms of a linear spin wave model, whereas a spin diffusion model was applied to the collective excitations of the paramagnetic phase. However, it was found that both models can be applied to excitations in all three phases. In optimally doped CaFe$_{0.88}$Co$_{0.12}$AsF, a spin resonance signal was detected as part of the spin excitation spectrum at Q=(0.5, 0.5, 0). The observation of the spin resonance signal supports the s± symmetry of the superconducting gap function. In the undoped CaFeAsF compound three dimensional spin wave like excitations of the static Fe-SDW order have been observed at Q$_{AFM}$=(0.5, 0.5, 0.5), for temperatures below T$_{N}$. Above T$_{N}$ and for energies below 20 meV, the spin wave like excitations are replaced by short range two dimensional paramagnetic excitations, which persist up to 270 K. In superconducting FeSe$_{0.5}$Te$_{0.5}$ polarized neutron scattering investigations revealed the magnetic nature of the spin resonance signal and the excitation spectrum at Q=(0.5, 0.5, 0) up to 30 meV. The whole excitation spectrum including the spin resonance signal consists of an isotropic distribution of spin excitations with magnetic moments fluctuating in the ab-plane and perpendicular to the ab-plane, $χ^{"}_{ab}$(Q, ω) $\approx$ $χ^{"}_{c}$(Q, ω). In Eu(Fe$_{1−x}$Co$_{x}$)$_{2}$As$_{2}$ and EuFe$_{2}$(As$_{1−x}$P$_{x}$)$_{2}$ the effect of impurity doping on the static order of the magnetic lattice of the Eu$^{2+}$-moments has been studied by means of polarized and non-polarized neutron diffraction experiments. The introduction of cobalt leads to a helical type structure of the Eusublattice with Eu$^{2+}$-moments oriented parallel to the ab-plane. Whereas, partial replacement of arsenic by phosphorous leads to a ferromagnetic type structure and eventually results in a coexistence of long range ferromagnetic order and superconductivity.
000138736 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000138736 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x1
000138736 536__ $$0G:(DE-HGF)POF2-542$$a542 - Neutrons (POF2-542)$$cPOF2-542$$fPOF II$$x2
000138736 536__ $$0G:(DE-HGF)POF2-544$$a544 - In-house Research with PNI (POF2-544)$$cPOF2-544$$fPOF II$$x3
000138736 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x4
000138736 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation$$xDiss.
000138736 8564_ $$uhttps://juser.fz-juelich.de/record/138736/files/FZJ-2013-04820.pdf$$yOpenAccess
000138736 8564_ $$uhttps://juser.fz-juelich.de/record/138736/files/FZJ-2013-04820.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000138736 8564_ $$uhttps://juser.fz-juelich.de/record/138736/files/FZJ-2013-04820.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000138736 8564_ $$uhttps://juser.fz-juelich.de/record/138736/files/FZJ-2013-04820.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000138736 909__ $$ooai:juser.fz-juelich.de:138736$$pVDB
000138736 909__ $$ooai:juser.fz-juelich.de:138736$$pOA
000138736 909CO $$ooai:juser.fz-juelich.de:138736$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$pVDB:MLZ$$popenaire
000138736 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000138736 9141_ $$y2013
000138736 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130901$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000138736 9132_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6219H$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000138736 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x1
000138736 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000138736 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x1
000138736 9131_ $$0G:(DE-HGF)POF2-542$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vNeutrons$$x2
000138736 9131_ $$0G:(DE-HGF)POF2-544$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vIn-house Research with PNI$$x3
000138736 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x4
000138736 920__ $$lyes
000138736 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000138736 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000138736 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000138736 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x3
000138736 9801_ $$aFullTexts
000138736 980__ $$aphd
000138736 980__ $$aUNRESTRICTED
000138736 980__ $$aFullTexts
000138736 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000138736 980__ $$aI:(DE-Juel1)PGI-4-20110106
000138736 980__ $$aI:(DE-82)080009_20140620
000138736 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000138736 980__ $$aVDB
000138736 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000138736 981__ $$aI:(DE-Juel1)PGI-4-20110106
000138736 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218