000138775 001__ 138775
000138775 005__ 20210129212350.0
000138775 0247_ $$2doi$$a10.1088/0957-4484/24/33/335601
000138775 0247_ $$2ISSN$$a1361-6528
000138775 0247_ $$2ISSN$$a0957-4484
000138775 0247_ $$2WOS$$aWOS:000322377600010
000138775 037__ $$aFZJ-2013-04859
000138775 082__ $$a530
000138775 1001_ $$0P:(DE-HGF)0$$aGrap, Th$$b0$$eCorresponding author
000138775 245__ $$aSelf-catalyzed VLS grown InAs nanowires with twinning superlattices
000138775 260__ $$aBristol$$bIOP Publ.$$c2013
000138775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1385391815_27813
000138775 3367_ $$2DataCite$$aOutput Types/Journal article
000138775 3367_ $$00$$2EndNote$$aJournal Article
000138775 3367_ $$2BibTeX$$aARTICLE
000138775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138775 3367_ $$2DRIVER$$aarticle
000138775 500__ $$3POF3_Assignment on 2016-02-29
000138775 520__ $$aWe report on the self-catalyzed growth of InAs nanowires by molecular beam epitaxy on GaAs substrates covered by a thin silicon oxide layer. Clear evidence is presented to demonstrate that, under our experimental conditions, the growth takes place by the vapor–liquid–solid (VLS) mechanism via an In droplet. The nanowire growth rate is controlled by the arsenic pressure while the diameter depends mainly on the In rate. The contact angle of the In droplet is smaller than that of the Ga droplet involved in the growth of GaAs nanowires, resulting in much lower growth rates. The crystal structure of the VLS grown InAs nanowires is zinc blende with regularly spaced rotational twins forming a twinning superlattice.
000138775 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000138775 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000138775 7001_ $$0P:(DE-Juel1)141766$$aRieger, T$$b1$$ufzj
000138775 7001_ $$0P:(DE-Juel1)125566$$aBlömers, Christian$$b2
000138775 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b3
000138775 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D$$b4$$ufzj
000138775 7001_ $$0P:(DE-Juel1)128603$$aLepsa, M I$$b5$$ufzj
000138775 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/24/33/335601$$gVol. 24, no. 33, p. 335601 -$$n33$$p335601 -$$tNanotechnology$$v24$$x1361-6528$$y2013
000138775 8564_ $$uhttps://juser.fz-juelich.de/record/138775/files/FZJ-2013-04859_PV.pdf$$yRestricted$$zPublished final document.
000138775 909CO $$ooai:juser.fz-juelich.de:138775$$pVDB
000138775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141766$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000138775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125566$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000138775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000138775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000138775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000138775 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000138775 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000138775 9141_ $$y2013
000138775 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000138775 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138775 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138775 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138775 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138775 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138775 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138775 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000138775 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000138775 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000138775 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000138775 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000138775 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000138775 980__ $$ajournal
000138775 980__ $$aVDB
000138775 980__ $$aUNRESTRICTED
000138775 980__ $$aI:(DE-Juel1)PGI-9-20110106
000138775 980__ $$aI:(DE-Juel1)VDB881
000138775 981__ $$aI:(DE-Juel1)VDB881