Hauptseite > Publikationsdatenbank > Self-catalyzed VLS grown InAs nanowires with twinning superlattices > print |
001 | 138775 | ||
005 | 20210129212350.0 | ||
024 | 7 | _ | |a 10.1088/0957-4484/24/33/335601 |2 doi |
024 | 7 | _ | |a 1361-6528 |2 ISSN |
024 | 7 | _ | |a 0957-4484 |2 ISSN |
024 | 7 | _ | |a WOS:000322377600010 |2 WOS |
037 | _ | _ | |a FZJ-2013-04859 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Grap, Th |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Self-catalyzed VLS grown InAs nanowires with twinning superlattices |
260 | _ | _ | |a Bristol |c 2013 |b IOP Publ. |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1385391815_27813 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
520 | _ | _ | |a We report on the self-catalyzed growth of InAs nanowires by molecular beam epitaxy on GaAs substrates covered by a thin silicon oxide layer. Clear evidence is presented to demonstrate that, under our experimental conditions, the growth takes place by the vapor–liquid–solid (VLS) mechanism via an In droplet. The nanowire growth rate is controlled by the arsenic pressure while the diameter depends mainly on the In rate. The contact angle of the In droplet is smaller than that of the Ga droplet involved in the growth of GaAs nanowires, resulting in much lower growth rates. The crystal structure of the VLS grown InAs nanowires is zinc blende with regularly spaced rotational twins forming a twinning superlattice. |
536 | _ | _ | |a 421 - Frontiers of charge based Electronics (POF2-421) |0 G:(DE-HGF)POF2-421 |c POF2-421 |x 0 |f POF II |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Rieger, T |0 P:(DE-Juel1)141766 |b 1 |u fzj |
700 | 1 | _ | |a Blömers, Christian |0 P:(DE-Juel1)125566 |b 2 |
700 | 1 | _ | |a Schäpers, Thomas |0 P:(DE-Juel1)128634 |b 3 |
700 | 1 | _ | |a Grützmacher, D |0 P:(DE-Juel1)125588 |b 4 |u fzj |
700 | 1 | _ | |a Lepsa, M I |0 P:(DE-Juel1)128603 |b 5 |u fzj |
773 | _ | _ | |a 10.1088/0957-4484/24/33/335601 |g Vol. 24, no. 33, p. 335601 - |p 335601 - |n 33 |0 PERI:(DE-600)1362365-5 |t Nanotechnology |v 24 |y 2013 |x 1361-6528 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/138775/files/FZJ-2013-04859_PV.pdf |z Published final document. |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:138775 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)141766 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)125566 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)128634 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128603 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-421 |2 G:(DE-HGF)POF2-400 |v Frontiers of charge based Electronics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
914 | 1 | _ | |y 2013 |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-Juel1)VDB881 |
981 | _ | _ | |a I:(DE-Juel1)VDB881 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|