001     139042
005     20250129094351.0
024 7 _ |2 doi
|a 10.1016/j.phpro.2013.03.190
024 7 _ |2 ISSN
|a 1875-3884
024 7 _ |2 ISSN
|a 1875-3892
024 7 _ |2 WOS
|a WOS:000331183800024
024 7 _ |2 Handle
|a 2128/8383
037 _ _ |a FZJ-2013-05063
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)130516
|a Babcock, E.
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Polarization Analysis with 3He Spin Filters for Separating Coherent from Incoherent Scattering in Soft Matter Studies
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2013
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1423118412_20914
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In soft matter small angle neutron scattering (SANS) studies at large Q values, incoherent scattering becomes the dominant signal. In the Q-range of interest to this work, from 0.2 Å−1 to about 1.0 Å−1, the coherent scattering from the typical protein or polymer in a D2O buffer solution inevitably drops one to two orders of magnitude or more below the total scattering. Even after careful and accurate subtraction of the measured D2O buffer scattering, the remaining corrected, i.e. sample-only, signal will still be dominated by diffuse incoherent scattering from hydrogen in the sample itself. This is the exact region of interest when one wishes to probe the structural changes in “living” proteins caused by interactions and motions related to function. To further complicate the problem, there is strong motivation to measure this Q-regime at very low concentrations because it has been shown with wide angle X-ray scattering that proteins can undergo concentration-dependent structural changes that rapidly increase below concentrations of about 5% [1] motivating the study of protein solutions at ever lower concentrations. In this case the signal from the protein will inevitably become much less than the scattering of the D2O buffer solution it is contained in. Polarization analysis offers the opportunity to separate the weak coherent signal from the larger incoherent signal and perhaps enable measurements under the conditions described above. This paper will address the issues associated with the correct separation of coherent and incoherent scattering for soft matter samples. We have performed tests measurements on KWS2 which show the viability of the method on a protonated α-lactalbumin solution at 2.5% (1 mm thick) and 0.25% (2 mm thick) concentrations in a D2O buffer solution. Additionally describe a the method of implementation using 3He spin filters, some practical considerations, and future plans for a dedicated device at the JCNS.
536 _ _ |0 G:(DE-HGF)POF2-422
|a 422 - Spin-based and quantum information (POF2-422)
|c POF2-422
|f POF II
|x 0
536 _ _ |0 G:(DE-HGF)POF2-424
|a 424 - Exploratory materials and phenomena (POF2-424)
|c POF2-424
|f POF II
|x 1
536 _ _ |0 G:(DE-HGF)POF2-542
|a 542 - Neutrons (POF2-542)
|c POF2-542
|f POF II
|x 2
536 _ _ |0 G:(DE-HGF)POF2-544
|a 544 - In-house Research with PNI (POF2-544)
|c POF2-544
|f POF II
|x 3
536 _ _ |0 G:(DE-HGF)POF2-54G24
|a 54G - JCNS (POF2-54G24)
|c POF2-54G24
|f POF II
|x 4
536 _ _ |0 G:(DE-HGF)POF2-451
|a 451 - Soft Matter Composites (POF2-451)
|c POF2-451
|f POF II
|x 5
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
650 2 7 |0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|a Soft Condensed Matter
|x 0
650 1 7 |a Basic research
|0 V:(DE-MLZ)GC-2004-2016
|2 V:(DE-HGF)
|x 2
650 1 7 |a Others
|0 V:(DE-MLZ)GC-180
|2 V:(DE-HGF)
|x 1
650 1 7 |a Soft Matter, Macromolecules, Complex fluids, Biophysics
|0 V:(DE-MLZ)GC-140
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)KWS2-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|x 0
700 1 _ |0 P:(DE-Juel1)144963
|a Salhi, Z.
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)130507
|a Appavou, M. -S.
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)144382
|a Feoktystov, A.
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)130893
|a Pipich, V.
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)130905
|a Radulescu, A.
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)130875
|a Ossovyi, V.
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)130984
|a Staringer, S.
|b 7
|u fzj
700 1 _ |0 P:(DE-Juel1)130729
|a Ioffe, A.
|b 8
|u fzj
773 _ _ |0 PERI:(DE-600)2455598-8
|a 10.1016/j.phpro.2013.03.190
|g Vol. 42, p. 154 - 162
|p 154 - 162
|t Physics procedia
|v 42
|x 1875-3892
|y 2013
856 4 _ |z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/139042/files/FZJ-2013-05063.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/139042/files/FZJ-2013-05063.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139042/files/FZJ-2013-05063.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139042/files/FZJ-2013-05063.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:139042
|p openaire
|p VDB:MLZ
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130516
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144963
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130507
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144382
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130893
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130905
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130875
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130984
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130729
|a Forschungszentrum Jülich GmbH
|b 8
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-144
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Collective States
|x 0
913 2 _ |0 G:(DE-HGF)POF3-524
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Collective States
|x 1
913 2 _ |0 G:(DE-HGF)POF3-621
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|9 G:(DE-HGF)POF3-6215
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v In-house research on the structure, dynamics and function of matter
|x 2
913 2 _ |0 G:(DE-HGF)POF3-600
|1 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF
|9 G:(DE-HGF)POF3-6G15
|a DE-HGF
|b Programmorientierte Förderung
|l POF III
|v Forschungsbereich Materie
|x 3
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|9 G:(DE-HGF)POF3-6G4
|a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|v Facility topic: Neutrons for Research on Condensed Matter
|x 4
913 1 _ |0 G:(DE-HGF)POF2-422
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
913 1 _ |0 G:(DE-HGF)POF2-424
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Exploratory materials and phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
913 1 _ |0 G:(DE-HGF)POF2-542
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|a DE-HGF
|b Struktur der Materie
|v Neutrons
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |0 G:(DE-HGF)POF2-544
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|a DE-HGF
|b Struktur der Materie
|v In-house Research with PNI
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |0 G:(DE-HGF)POF2-54G24
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|a DE-HGF
|b Struktur der Materie
|v JCNS
|x 4
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |0 G:(DE-HGF)POF2-451
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Soft Matter Composites
|x 5
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l BioSoft
914 1 _ |y 2013
915 _ _ |0 LIC:(DE-HGF)CCBYNCND3
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
915 _ _ |0 StatID:(DE-HGF)0020
|2 StatID
|a No Peer review
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 3
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 4
920 1 _ |0 I:(DE-Juel1)ICS-1-20110106
|k ICS-1
|l Neutronenstreuung
|x 5
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
981 _ _ |a I:(DE-Juel1)ICS-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21