000139150 001__ 139150
000139150 005__ 20210129212447.0
000139150 0247_ $$2doi$$a10.1051/0004-6361/201117876
000139150 0247_ $$2ISSN$$a0004-6361
000139150 0247_ $$2ISSN$$a1432-0746
000139150 0247_ $$2WOS$$aWOS:000304390900035
000139150 0247_ $$2altmetric$$aaltmetric:499121
000139150 037__ $$aFZJ-2013-05157
000139150 082__ $$a520
000139150 1001_ $$0P:(DE-Juel1)145207$$aDapp, Wolfgang$$b0$$ufzj
000139150 245__ $$aBridging the gap: disk formation in the Class 0 phase with ambipolar diffusion and Ohmic dissipation
000139150 260__ $$aLes Ulis$$bEDP Sciences$$c2012
000139150 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1384771310_25829
000139150 3367_ $$2DataCite$$aOutput Types/Journal article
000139150 3367_ $$00$$2EndNote$$aJournal Article
000139150 3367_ $$2BibTeX$$aARTICLE
000139150 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139150 3367_ $$2DRIVER$$aarticle
000139150 520__ $$aContext. Ideal magnetohydrodynamical (MHD) simulations have revealed catastrophic magnetic braking in the protostellar phase, which prevents the formation of a centrifugal disk around a nascent protostar.

Aims. We determine if non-ideal MHD, including the effects of ambipolar diffusion and Ohmic dissipation determined from a detailed chemical network model, will allow for disk formation at the earliest stages of star formation.

Methods. We employ the axisymmetric thin-disk approximation in order to resolve a dynamic range of 9 orders of magnitude in length and 16 orders of magnitude in density, while also calculating partial ionization using up to 19 species in a detailed chemical equilibrium model. Magnetic braking is applied to the rotation using a steady-state approximation, and a barotropic relation is used to capture the thermal evolution.

Results. We resolve the formation of the first and second cores, with expansion waves at the periphery of each, a magnetic diffusion shock, and prestellar infall profiles at larger radii. Power-law profiles in each region can be understood analytically. After the formation of the second core, the centrifugal support rises rapidly and a low-mass disk of radius approximately 10 R_sun is formed at the earliest stage of star formation, when the second core has mass of about 0.001 M_sun. The mass-to-flux ratio is about 10,000 times the critical value in the central region. 

Conclusions. A small centrifugal disk can form in the earliest stage of star formation, due to a shut-off of magnetic braking caused by magnetic field dissipation in the first core region. There is enough angular momentum loss to allow the second collapse to occur directly, and a low-mass stellar core to form with a surrounding disk. The disk mass and size will depend upon how the angular momentum transport mechanisms within the disk can keep up with mass infall onto the disk. Accounting only for direct infall, we estimate that the disk will remain \lessim 10 AU, undetectable even by ALMA, for approximately 40,000 yr, representing the early Class 0 phase.
000139150 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000139150 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000139150 7001_ $$0P:(DE-HGF)0$$aBasu, Shantanu$$b1
000139150 7001_ $$0P:(DE-HGF)0$$aKunz, Matthew W.$$b2
000139150 773__ $$0PERI:(DE-600)1458466-9$$a10.1051/0004-6361/201117876$$gVol. 541, p. A35 -$$pA35 -$$tAstronomy and astrophysics$$v541$$x1432-0746$$y2012
000139150 8564_ $$uhttp://dx.doi.org/10.1051/0004-6361/201117876
000139150 8564_ $$uhttps://juser.fz-juelich.de/record/139150/files/FZJ-2013-05157.pdf$$yRestricted
000139150 909CO $$ooai:juser.fz-juelich.de:139150$$pVDB
000139150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145207$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000139150 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000139150 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000139150 9141_ $$y2013
000139150 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000139150 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000139150 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000139150 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000139150 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000139150 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000139150 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000139150 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000139150 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000139150 920__ $$lyes
000139150 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000139150 980__ $$ajournal
000139150 980__ $$aVDB
000139150 980__ $$aUNRESTRICTED
000139150 980__ $$aI:(DE-Juel1)JSC-20090406