000139180 001__ 139180
000139180 005__ 20210129212451.0
000139180 0247_ $$2doi$$a10.1038/nsmb.2690
000139180 0247_ $$2ISSN$$a1545-9993
000139180 0247_ $$2ISSN$$a1545-9985
000139180 0247_ $$2ISSN$$a1072-8368
000139180 0247_ $$2WOS$$aWOS:000328007600011
000139180 0247_ $$2altmetric$$aaltmetric:1883929
000139180 0247_ $$2pmid$$apmid:24186064
000139180 037__ $$aFZJ-2013-05183
000139180 041__ $$aEnglish
000139180 082__ $$a570
000139180 1001_ $$0P:(DE-HGF)0$$aBock, Lars V$$b0$$eCorresponding author
000139180 245__ $$aEnergy barriers and driving forces in tRNA translocation through the ribosome
000139180 260__ $$aLondon [u.a.]$$bNature Publishing Group$$c2013
000139180 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1384352356_7473
000139180 3367_ $$2DataCite$$aOutput Types/Journal article
000139180 3367_ $$00$$2EndNote$$aJournal Article
000139180 3367_ $$2BibTeX$$aARTICLE
000139180 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139180 3367_ $$2DRIVER$$aarticle
000139180 500__ $$3POF3_Assignment on 2016-02-29
000139180 520__ $$aDuring protein synthesis, tRNAs move from the ribosome's aminoacyl to peptidyl to exit sites. Here we investigate conformational motions during spontaneous translocation, using molecular dynamics simulations of 13 intermediate-translocation-state models obtained by combining Escherichia coli ribosome crystal structures with cryo-EM data. Resolving fast transitions between states, we find that tRNA motions govern the transition rates within the pre- and post-translocation states. Intersubunit rotations and L1-stalk motion exhibit fast intrinsic submicrosecond dynamics. The L1 stalk drives the tRNA from the peptidyl site and links intersubunit rotation to translocation. Displacement of tRNAs is controlled by 'sliding' and 'stepping' mechanisms involving conserved L16, L5 and L1 residues, thus ensuring binding to the ribosome despite large-scale tRNA movement. Our results complement structural data with a time axis, intrinsic transition rates and molecular forces, revealing correlated functional motions inaccessible by other means.
000139180 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000139180 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000139180 7001_ $$0P:(DE-HGF)0$$aBlau, Christian$$b1
000139180 7001_ $$0P:(DE-Juel1)132018$$aSchröder, Gunnar$$b2$$ufzj
000139180 7001_ $$0P:(DE-HGF)0$$aDavydov, Iakov I$$b3
000139180 7001_ $$0P:(DE-HGF)0$$aFischer, Niels$$b4
000139180 7001_ $$0P:(DE-HGF)0$$aStark, Holger$$b5
000139180 7001_ $$0P:(DE-HGF)0$$aRodnina, Marina V$$b6
000139180 7001_ $$0P:(DE-HGF)0$$aVaiana, Andrea C$$b7
000139180 7001_ $$0P:(DE-HGF)0$$aGrubmüller, Helmut$$b8
000139180 773__ $$0PERI:(DE-600)2131437-8$$a10.1038/nsmb.2690$$p1-8$$tNature structural & molecular biology$$v2690$$x1545-9993$$y2013
000139180 8564_ $$uhttp://www.nature.com/nsmb/journal/vaop/ncurrent/pdf/nsmb.2690.pdf
000139180 8564_ $$uhttps://juser.fz-juelich.de/record/139180/files/FZJ-2013-05183.pdf$$yRestricted
000139180 909CO $$ooai:juser.fz-juelich.de:139180$$pVDB
000139180 9141_ $$y2013
000139180 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000139180 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000139180 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000139180 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000139180 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000139180 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000139180 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000139180 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000139180 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000139180 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000139180 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000139180 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000139180 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132018$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000139180 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000139180 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000139180 920__ $$lyes
000139180 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000139180 980__ $$ajournal
000139180 980__ $$aVDB
000139180 980__ $$aUNRESTRICTED
000139180 980__ $$aI:(DE-Juel1)ICS-6-20110106
000139180 981__ $$aI:(DE-Juel1)IBI-7-20200312