Home > Publications database > Energy barriers and driving forces in tRNA translocation through the ribosome > print |
001 | 139180 | ||
005 | 20210129212451.0 | ||
024 | 7 | _ | |a 10.1038/nsmb.2690 |2 doi |
024 | 7 | _ | |a 1545-9993 |2 ISSN |
024 | 7 | _ | |a 1545-9985 |2 ISSN |
024 | 7 | _ | |a 1072-8368 |2 ISSN |
024 | 7 | _ | |a WOS:000328007600011 |2 WOS |
024 | 7 | _ | |a altmetric:1883929 |2 altmetric |
024 | 7 | _ | |a pmid:24186064 |2 pmid |
037 | _ | _ | |a FZJ-2013-05183 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Bock, Lars V |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Energy barriers and driving forces in tRNA translocation through the ribosome |
260 | _ | _ | |a London [u.a.] |c 2013 |b Nature Publishing Group |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1384352356_7473 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
520 | _ | _ | |a During protein synthesis, tRNAs move from the ribosome's aminoacyl to peptidyl to exit sites. Here we investigate conformational motions during spontaneous translocation, using molecular dynamics simulations of 13 intermediate-translocation-state models obtained by combining Escherichia coli ribosome crystal structures with cryo-EM data. Resolving fast transitions between states, we find that tRNA motions govern the transition rates within the pre- and post-translocation states. Intersubunit rotations and L1-stalk motion exhibit fast intrinsic submicrosecond dynamics. The L1 stalk drives the tRNA from the peptidyl site and links intersubunit rotation to translocation. Displacement of tRNAs is controlled by 'sliding' and 'stepping' mechanisms involving conserved L16, L5 and L1 residues, thus ensuring binding to the ribosome despite large-scale tRNA movement. Our results complement structural data with a time axis, intrinsic transition rates and molecular forces, revealing correlated functional motions inaccessible by other means. |
536 | _ | _ | |a 452 - Structural Biology (POF2-452) |0 G:(DE-HGF)POF2-452 |c POF2-452 |x 0 |f POF II |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Blau, Christian |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Schröder, Gunnar |0 P:(DE-Juel1)132018 |b 2 |u fzj |
700 | 1 | _ | |a Davydov, Iakov I |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Fischer, Niels |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Stark, Holger |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Rodnina, Marina V |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Vaiana, Andrea C |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Grubmüller, Helmut |0 P:(DE-HGF)0 |b 8 |
773 | _ | _ | |a 10.1038/nsmb.2690 |p 1-8 |0 PERI:(DE-600)2131437-8 |t Nature structural & molecular biology |v 2690 |y 2013 |x 1545-9993 |
856 | 4 | _ | |u http://www.nature.com/nsmb/journal/vaop/ncurrent/pdf/nsmb.2690.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/139180/files/FZJ-2013-05183.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:139180 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132018 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-559H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-450 |0 G:(DE-HGF)POF2-452 |2 G:(DE-HGF)POF2-400 |v Structural Biology |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l BioSoft |
914 | 1 | _ | |y 2013 |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|