000139281 001__ 139281
000139281 005__ 20210129212535.0
000139281 0247_ $$2doi$$a10.1093/cercor/bht268
000139281 0247_ $$2ISSN$$a1047-3211
000139281 0247_ $$2ISSN$$a1460-2199
000139281 0247_ $$2Handle$$a2128/8473
000139281 0247_ $$2WOS$$aWOS:000353838600002
000139281 037__ $$aFZJ-2013-05280
000139281 082__ $$a610
000139281 1001_ $$0P:(DE-HGF)0$$aSarid, L.$$b0$$eCorresponding author
000139281 245__ $$aContribution of Intracolumnar Layer 2/3-to-Layer 2/3 Excitatory Connections in Shaping the Response to Whisker Deflection in Rat Barrel Cortex
000139281 260__ $$aOxford$$bOxford Univ. Press$$c2015
000139281 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1428504263_1879
000139281 3367_ $$2DataCite$$aOutput Types/Journal article
000139281 3367_ $$00$$2EndNote$$aJournal Article
000139281 3367_ $$2BibTeX$$aARTICLE
000139281 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139281 3367_ $$2DRIVER$$aarticle
000139281 520__ $$aThis computational study integrates anatomical and physiological data to assess the functional role of the lateral excitatory connections between layer 2/3 (L2/3) pyramidal cells (PCs) in shaping their response during early stages of intracortical processing of a whisker deflection (WD). Based on in vivo and in vitro recordings, and 3D reconstructions of connected pairs of L2/3 PCs, our model predicts that: 1) AMPAR and NMDAR conductances/synapse are 0.52 ± 0.24 and 0.40 ± 0.34 nS, respectively; 2) following WD, connection between L2/3 PCs induces a composite EPSPs of 7.6 ± 1.7 mV, well below the threshold for action potential (AP) initiation; 3) together with the excitatory feedforward L4-to-L2/3 connection, WD evoked a composite EPSP of 16.3 ± 3.5 mV and a probability of 0.01 to generate an AP. When considering the variability in L4 spiny neurons responsiveness, it increased to 17.8 ± 11.2 mV; this 3-fold increase in the SD yielded AP probability of 0.35; 4) the interaction between L4-to-L2/3 and L2/3-to-L2/3 inputs is highly nonlinear; 5) L2/3 dendritic morphology significantly affects L2/3 PCs responsiveness. We conclude that early stages of intracortical signaling of WD are dominated by a combination of feedforward L4–L2/3 and L2/3–L2/3 lateral connections. 
000139281 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000139281 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000139281 7001_ $$0P:(DE-Juel1)131680$$aFeldmeyer, D.$$b1
000139281 7001_ $$0P:(DE-HGF)0$$aGidon, A.$$b2
000139281 7001_ $$0P:(DE-HGF)0$$aSakmann, B.$$b3
000139281 7001_ $$0P:(DE-HGF)0$$aSegev, I.$$b4$$eCorresponding Author
000139281 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bht268$$gp. bht268$$n4$$p849-858$$tCerebral cortex$$v25$$x1460-2199$$y2015
000139281 8564_ $$uhttp://cercor.oxfordjournals.org/content/25/4/849.long
000139281 8564_ $$uhttps://juser.fz-juelich.de/record/139281/files/1220.pdf$$yOpenAccess
000139281 8564_ $$uhttps://juser.fz-juelich.de/record/139281/files/1220.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000139281 8564_ $$uhttps://juser.fz-juelich.de/record/139281/files/1220.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000139281 8564_ $$uhttps://juser.fz-juelich.de/record/139281/files/1220.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000139281 8564_ $$uhttps://juser.fz-juelich.de/record/139281/files/1220.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000139281 909CO $$ooai:juser.fz-juelich.de:139281$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000139281 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131680$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000139281 9130_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0
000139281 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000139281 9141_ $$y2015
000139281 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000139281 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000139281 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000139281 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000139281 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000139281 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000139281 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000139281 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000139281 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000139281 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000139281 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000139281 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000139281 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000139281 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000139281 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000139281 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000139281 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000139281 9801_ $$aFullTexts
000139281 980__ $$ajournal
000139281 980__ $$aVDB
000139281 980__ $$aUNRESTRICTED
000139281 980__ $$aFullTexts
000139281 980__ $$aI:(DE-Juel1)INM-2-20090406
000139281 980__ $$aI:(DE-82)080010_20140620