001     139288
005     20210129212537.0
024 7 _ |a 10.3233/JAD-131232
|2 doi
024 7 _ |2 WOS
|a WOS:000330739000018
037 _ _ |a FZJ-2013-05287
082 _ _ |a 610
100 1 _ |a Jacobs, Heidi
|0 P:(DE-Juel1)144971
|b 0
|u fzj
|e Corresponding author
245 _ _ |a White matter hyperintensities are positively associated with cortical thickness in Alzheimer's disease.
260 _ _ |a Amsterdam
|c 2014
|b IOS Press
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1392906582_14222
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a White matter hyperintensities are associated with an increased risk of Alzheimer's disease (AD). White matter hyperintensities are believed to disconnect brain areas. We examined the topographical association between white matter hyperintensities and cortical thickness in controls, mild cognitive impairment (MCI), and AD patients. We examined associations between white matter hyperintensities and cortical thickness among 18 older cognitively healthy participants, 18 amnestic MCI, and 17 mild AD patients. These associations were cluster-size corrected for multiple comparisons. In controls, a positive association between white matter hyperintensities and cortical thickness was found in lateral temporal gyri. In MCI patients, white matter hyperintensities were positively related to cortical thickness in frontal, temporal, and parietal areas. Positive associations between white matter hyperintensities and cortical thickness in AD patients were confined to parietal areas. The results of the interaction group by white matter hyperintensities on cortical thickness were consistent with the findings of positive associations in the parietal lobe for MCI and AD patients separately. In the frontal areas, controls and AD patients showed inverse associations between white matter hyperintensities and cortical thickness, while MCI patients still showed a positive association. These results suggest that a paradoxical relationship between white matter hyperintensities and cortical thickness could be a consequence of neuroinflammatory processes induced by AD-pathology and white matter hyperintensities. Alternatively, it might reflect a region-specific and disease-stage dependent compensatory hypertrophy in response to a compromised network.
536 _ _ |a 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)
|0 G:(DE-HGF)POF2-333
|c POF2-333
|x 0
|f POF II
700 1 _ |a Clerx, L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gronenschild, E. H. B. M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Aalten, P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Verhey, F. R. J.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.3233/JAD-131232
|p 409-422
|n 2
|0 PERI:(DE-600)2070772-1
|t Journal of Alzheimer's disease
|v 39
|x 1387-2877
856 4 _ |u https://juser.fz-juelich.de/record/139288/files/FZJ-2013-05287.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:139288
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144971
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-579H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-333
|2 G:(DE-HGF)POF2-300
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21