001     139294
005     20240712084452.0
024 7 _ |a 10.1016/j.solmat.2013.05.053
|2 doi
024 7 _ |a 1879-3398
|2 ISSN
024 7 _ |a 0927-0248
|2 ISSN
024 7 _ |a WOS:000326908000017
|2 WOS
024 7 _ |a altmetric:21822119
|2 altmetric
037 _ _ |a FZJ-2013-05292
082 _ _ |a 530
100 1 _ |a Lambertz, A.
|0 P:(DE-Juel1)130263
|b 0
|e Corresponding author
245 _ _ |a Microcrystalline silicon–oxygen alloys for application in silicon solar cells and modules
260 _ _ |a Amsterdam
|c 2013
|b North Holland
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1387373895_4805
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Microcrystalline silicon oxide (mc-SiOx:H) alloys prepared by plasma enhanced chemical vapor deposition (PECVD) represent a versatile material class for opto-electronic applications especially for thin-film and wafer based silicon solar cells. The material is a phase mixture of microcrystalline silicon (mc-Si:H) and amorphous silicon oxide (a-SiOx:H). The possibility to enhance the optical band gap energy and to adjust the refractive index over a considerable range, together with the possibility to dope the material p-type as well as n-type, makes μc-SiOx:H an ideal material for the application as window layer, as intermediate reflector (IR), and as back reflector in thin-film silicon solar cells. Analogously, μc-SiOx:H is a suitable material for p- and n-type contact layers in silicon hetero junction (SHJ) solar cells. The present paper gives an overview on the range of physical parameters (refractive index, optical band gap, conductivity) which can be covered by this material by variation of the deposition conditions. The paper focuses on the interdependence between these material properties and optical improvements for amorphous silicon/ microcrystalline silicon (a-Si:H/mc-Si:H) tandem solar cells prepared on different substrates, such as Asahi (VU) and sputtered ZnO:Al. It gives a guideline on possible optical gains when using doped mc-SiOx:H in silicon based solar cells. As intermediate reflector in a-Si:H/mc-Si:H tandem cells mc-SiOx:H leads to an effective transfer of short circuit current generation from the bottom cell to the top cell resulting in a possible thickness reduction of the top cell by 40%. Within another series of solar cells shown in this paper a short circuit current density of 14.1mA/cm² for an a-Si:H/mc-Si:H tandem solar cell with a mc-SiOx:H intermediate reflector is demonstrated. A SHJ solar cell on a flat (non-textured) wafer using p- and n-type doped mc-SiOx:H contact layers with an effective area efficiency of 19.0% is also presented. &
536 _ _ |a 111 - Thin Film Photovoltaics (POF2-111)
|0 G:(DE-HGF)POF2-111
|c POF2-111
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Smirnov, V.
|0 P:(DE-Juel1)130297
|b 1
700 1 _ |a Merdzhanova, T.
|0 P:(DE-Juel1)130268
|b 2
700 1 _ |a Ding, K.
|0 P:(DE-Juel1)130233
|b 3
700 1 _ |a Haas, Stefan
|0 P:(DE-Juel1)130246
|b 4
|u fzj
700 1 _ |a Jost, G.
|0 P:(DE-Juel1)139528
|b 5
700 1 _ |a Schropp, R. E. I.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Finger, F.
|0 P:(DE-Juel1)130238
|b 7
700 1 _ |a Rau, U.
|0 P:(DE-Juel1)143905
|b 8
773 _ _ |a 10.1016/j.solmat.2013.05.053
|g Vol. 119, p. 134 - 143
|p 134 - 143
|0 PERI:(DE-600)2012677-3
|t Solar energy materials & solar cells
|v 119
|y 2013
|x 0927-0248
856 4 _ |u https://juser.fz-juelich.de/record/139294/files/FZJ-2013-05292_PV.pdf
|z Published final document.
|y Restricted
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:139294
909 C O |o oai:juser.fz-juelich.de:139294
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130297
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130268
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130233
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130246
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)139528
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130238
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)143905
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-129H
|2 G:(DE-HGF)POF3-100
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF2-110
|0 G:(DE-HGF)POF2-111
|2 G:(DE-HGF)POF2-100
|v Thin Film Photovoltaics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21