001     139334
005     20210129212544.0
024 7 _ |a 10.1063/1.4829360
|2 doi
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a WOS:000327817000040
|2 WOS
024 7 _ |a 2128/5554
|2 Handle
024 7 _ |a altmetric:21822127
|2 altmetric
037 _ _ |a FZJ-2013-05331
082 _ _ |a 530
100 1 _ |a Wirths, S.
|0 P:(DE-Juel1)138778
|b 0
|e Corresponding author
245 _ _ |a Tensely strained GeSn alloys as optical gain media
260 _ _ |a Melville, NY
|c 2013
|b American Institute of Physics
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 139334
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a This letter presents the epitaxial growth and characterization of a heterostructure for an electrically injected laser, based on a strained GeSn active well. The elastic strain within the GeSn well can be tuned from compressive to tensile by high quality large Sn content (Si)GeSn buffers. The optimum combination of tensile strain and Sn alloying softens the requirements upon indirect to direct bandgap transition. We theoretically discuss the strain-doping relation for maximum net gain in the GeSn active layer. Employing tensile strain of 0.5% enables reasonable high optical gain values for Ge 0.94Sn0.06 and even without any n-type doping for Ge 0.92Sn0.08.
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Ikonic, Z.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tiedemann, Andreas
|0 P:(DE-Juel1)128639
|b 2
|u fzj
700 1 _ |a Holländer, B.
|0 P:(DE-Juel1)125595
|b 3
700 1 _ |a Stoica, T.
|0 P:(DE-Juel1)128637
|b 4
700 1 _ |a Mussler, G.
|0 P:(DE-Juel1)128617
|b 5
700 1 _ |a Breuer, U.
|0 P:(DE-Juel1)138352
|b 6
700 1 _ |a Hartmann, J. M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Benedetti, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Chiussi, S.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Grützmacher, D.
|0 P:(DE-Juel1)125588
|b 10
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 11
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 12
773 _ _ |a 10.1063/1.4829360
|g Vol. 103, no. 19, p. 192110 -
|0 PERI:(DE-600)1469436-0
|n 19
|p 192110 -
|t Applied physics letters
|v 103
|y 2013
|x 0003-6951
856 4 _ |y Publishers version according to licensing conditions.
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/139334/files/FZJ-2013-05331.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/139334/files/FZJ-2013-05331.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139334/files/FZJ-2013-05331.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139334/files/FZJ-2013-05331.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:139334
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138778
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128639
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)125595
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128637
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)138352
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)125569
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a VDB
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21