000139363 001__ 139363
000139363 005__ 20250129092350.0
000139363 037__ $$aFZJ-2013-05359
000139363 041__ $$aEnglish
000139363 1001_ $$0P:(DE-Juel1)145932$$avon Hebel, Christian$$b0$$ufzj
000139363 1112_ $$a73. Jahrestagung der Deutschen Geophysikalischen Gesellschaft$$cLeipzig$$d2013-03-04 - 2013-03-08$$wGermany
000139363 245__ $$aTowards Large Scale Multi-Layer-Conductivity Inversion of Quantitative Electromagnetic Induction Data
000139363 260__ $$c2013
000139363 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1391602389_16388$$xOther
000139363 3367_ $$033$$2EndNote$$aConference Paper
000139363 3367_ $$2DataCite$$aOther
000139363 3367_ $$2ORCID$$aLECTURE_SPEECH
000139363 3367_ $$2DRIVER$$aconferenceObject
000139363 3367_ $$2BibTeX$$aINPROCEEDINGS
000139363 520__ $$aElectromagnetic induction (EMI) systems enable high spatial resolution measurements within short times. Multi-offset EMI devices sense different depths and allow in principle a better vertical characterization of the subsurface, but lack in quantitative measurements due to static shifts that occur due to the influence of cables and/or operator. To calibrate the recorded apparent electrical conductivities (ECa) a linear regression between predicted ECa, obtained from a Maxwell-based exact forward model using inverted electrical resistivity tomography (ERT) data as input, and measured ECa is performed.
Recently, a two-layer inversion was introduced, using a combined one dimensional global-local search (GLS). The global-search optimizes along a regular grid using an approximate model. The subsequent local-search uses a Simplex minimization and an exact forward model. This approach uses no smoothing or damping to assure sharp layer boundaries. Here, we extended the GLS to three-layers. Thus the parameters increased from three to five enlarging the solution space and increasing the difficulty to find the global minimum. The GLS was implemented without and with lateral constraint which compared the current optimizations with the parameters obtained prior to that position. Large deviations called a new global and local search before inverting the next position. Moreover, a shuffled-complex-evolution (SCE) optimization was implemented that inverts each position separately using the exact forward model.
Experimental EMI and ERT transect data were acquired at the Scheyern research farm of Helmholtz-Zentrum-München. Performance and reliability of GLS and SCE were tested by running the optimization from start-to-end and from end-to-start of the profile. The GLS inversion results without lateral constraint showed a strong direction dependency indicating that the solution space consisted of too many local minima that trapped the inversion. The constraint stabilized the inversion, but the results still remained direction dependent. The SCE inversion results were direction independent indicating that the global minimum was found. Smoothly changing layer properties were obtained without large lateral jumps. Comparison with ERT inversion results showed similar lateral and vertical conductivity changes. The three-layer multi-configuration EMI inversion based on the SCE optimization is a powerful and widely applicable tool to image subsurface conductivity variations.
000139363 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000139363 7001_ $$0P:(DE-Juel1)140421$$aMester, Achim$$b1$$ufzj
000139363 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b2
000139363 7001_ $$0P:(DE-Juel1)139004$$aBikowski, Jutta$$b3$$ufzj
000139363 7001_ $$0P:(DE-Juel1)143809$$aRudolph, Sebastian$$b4$$ufzj
000139363 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5$$ufzj
000139363 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b6
000139363 909__ $$ooai:juser.fz-juelich.de:139363$$pVDB
000139363 909CO $$ooai:juser.fz-juelich.de:139363$$pVDB
000139363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145932$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000139363 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)140421$$aZentralinstitut für Elektronik$$b1$$kZEA-2
000139363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140421$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000139363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000139363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139004$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000139363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143809$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000139363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000139363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000139363 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000139363 9141_ $$y2013
000139363 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000139363 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x1
000139363 980__ $$aconf
000139363 980__ $$aVDB
000139363 980__ $$aUNRESTRICTED
000139363 980__ $$aI:(DE-Juel1)IBG-3-20101118
000139363 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000139363 981__ $$aI:(DE-Juel1)PGI-4-20110106
000139363 981__ $$aI:(DE-Juel1)ZEA-2-20090406