000139374 001__ 139374
000139374 005__ 20240712100819.0
000139374 0247_ $$2doi$$a10.5194/amtd-6-9939-2013
000139374 0247_ $$2Handle$$a2128/5558
000139374 037__ $$aFZJ-2013-05370
000139374 082__ $$a550
000139374 1001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b0$$eCorresponding author$$ufzj
000139374 245__ $$aVolcanic ash detection with infrared limb sounding: MIPAS observations and radiative transfer simulations
000139374 260__ $$c2013
000139374 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s139374
000139374 3367_ $$2DataCite$$aOutput Types/Journal article
000139374 3367_ $$00$$2EndNote$$aJournal Article
000139374 3367_ $$2BibTeX$$aARTICLE
000139374 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139374 3367_ $$2DRIVER$$aarticle
000139374 520__ $$aSmall volcanic ash particles have long residence times in troposphere and stratosphere so that they have impact on the Earth's radiative budget and consequently affect climate. For global long term observations of volcanic aerosol, infrared limb measurements provide excellent coverage, sensitivity to thin aerosol layers, and altitude information. The optical properties of volcanic ash and ice particles, derived from micro-physical properties, have opposing spectral gradients between 700 to 960 cm−1 for small particle sizes. Radiative transfer simulations that account for single scattering showed that the opposing spectral gradients directly transfer to infrared limb spectra. Indeed, we found the characteristic spectral signature, expected for volcanic ash, in measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) after the eruption of the Chilean volcano Puyehue-Cordón Caulle in June 2011. From these measurements we derived an ash detection threshold function. The empirical ash detection threshold was confirmed by simulations covering a wide range of atmospheric conditions, particle sizes, and particle concentrations for ice, volcanic ash, and sulfate aerosol. From the simulations we derived the detectable effective radius range of 0.2 to 3.5 μm and the detectable extinction coefficient range of 5 × 10−3 to 1 × 10−1 km−1. We also showed that this method is only sensitive to volcanic ash particles, but not to volcanic sulfate aerosol. This volcanic ash detection method for infrared limb measurements is a fast and reliable method and provides complementary information to existing satellite aerosol products.
000139374 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000139374 536__ $$0G:(DE-HGF)POF2-234$$a234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)$$cPOF2-234$$fPOF II$$x1
000139374 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000139374 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b1
000139374 7001_ $$0P:(DE-Juel1)129154$$aSpang, R.$$b2
000139374 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b3
000139374 773__ $$0PERI:(DE-600)2507817-3$$a10.5194/amtd-6-9939-2013$$gVol. 6, no. 6, p. 9939 - 9991$$n6$$p9939 - 9991$$tAtmospheric measurement techniques discussions$$v6$$x1867-8610$$y2013
000139374 8564_ $$yPublishers version according to licensing conditions.$$zPublished final document.
000139374 8564_ $$uhttps://juser.fz-juelich.de/record/139374/files/FZJ-2013-05370.pdf$$yOpenAccess$$zPublished final document.
000139374 8564_ $$uhttps://juser.fz-juelich.de/record/139374/files/FZJ-2013-05370.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000139374 8564_ $$uhttps://juser.fz-juelich.de/record/139374/files/FZJ-2013-05370.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000139374 8564_ $$uhttps://juser.fz-juelich.de/record/139374/files/FZJ-2013-05370.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000139374 8767_ $$92014-01-15$$d2014-01-15$$eAPC$$jZahlung erfolgt$$pamt-2013-282
000139374 909CO $$ooai:juser.fz-juelich.de:139374$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000139374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000139374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000139374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000139374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000139374 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000139374 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000139374 9131_ $$0G:(DE-HGF)POF2-234$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and Dynamics of the Upper Troposphere and Stratosphere$$x1
000139374 9141_ $$y2013
000139374 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000139374 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000139374 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000139374 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000139374 920__ $$lyes
000139374 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000139374 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000139374 9801_ $$aFullTexts
000139374 980__ $$ajournal
000139374 980__ $$aUNRESTRICTED
000139374 980__ $$aJUWEL
000139374 980__ $$aFullTexts
000139374 980__ $$aI:(DE-Juel1)JSC-20090406
000139374 980__ $$aI:(DE-Juel1)IEK-7-20101013
000139374 980__ $$aVDB
000139374 980__ $$aAPC
000139374 981__ $$aI:(DE-Juel1)ICE-4-20101013
000139374 981__ $$aI:(DE-Juel1)IEK-7-20101013