001     139374
005     20240712100819.0
024 7 _ |a 10.5194/amtd-6-9939-2013
|2 doi
024 7 _ |a 2128/5558
|2 Handle
037 _ _ |a FZJ-2013-05370
082 _ _ |a 550
100 1 _ |a Griessbach, Sabine
|0 P:(DE-Juel1)129121
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Volcanic ash detection with infrared limb sounding: MIPAS observations and radiative transfer simulations
260 _ _ |c 2013
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 139374
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Small volcanic ash particles have long residence times in troposphere and stratosphere so that they have impact on the Earth's radiative budget and consequently affect climate. For global long term observations of volcanic aerosol, infrared limb measurements provide excellent coverage, sensitivity to thin aerosol layers, and altitude information. The optical properties of volcanic ash and ice particles, derived from micro-physical properties, have opposing spectral gradients between 700 to 960 cm−1 for small particle sizes. Radiative transfer simulations that account for single scattering showed that the opposing spectral gradients directly transfer to infrared limb spectra. Indeed, we found the characteristic spectral signature, expected for volcanic ash, in measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) after the eruption of the Chilean volcano Puyehue-Cordón Caulle in June 2011. From these measurements we derived an ash detection threshold function. The empirical ash detection threshold was confirmed by simulations covering a wide range of atmospheric conditions, particle sizes, and particle concentrations for ice, volcanic ash, and sulfate aerosol. From the simulations we derived the detectable effective radius range of 0.2 to 3.5 μm and the detectable extinction coefficient range of 5 × 10−3 to 1 × 10−1 km−1. We also showed that this method is only sensitive to volcanic ash particles, but not to volcanic sulfate aerosol. This volcanic ash detection method for infrared limb measurements is a fast and reliable method and provides complementary information to existing satellite aerosol products.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
536 _ _ |a 234 - Composition and Dynamics of the Upper Troposphere and Stratosphere (POF2-234)
|0 G:(DE-HGF)POF2-234
|c POF2-234
|f POF II
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Hoffmann, L.
|0 P:(DE-Juel1)129125
|b 1
700 1 _ |a Spang, R.
|0 P:(DE-Juel1)129154
|b 2
700 1 _ |a Riese, M.
|0 P:(DE-Juel1)129145
|b 3
773 _ _ |a 10.5194/amtd-6-9939-2013
|g Vol. 6, no. 6, p. 9939 - 9991
|0 PERI:(DE-600)2507817-3
|n 6
|p 9939 - 9991
|t Atmospheric measurement techniques discussions
|v 6
|y 2013
|x 1867-8610
856 4 _ |y Publishers version according to licensing conditions.
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/139374/files/FZJ-2013-05370.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/139374/files/FZJ-2013-05370.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139374/files/FZJ-2013-05370.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139374/files/FZJ-2013-05370.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:139374
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129121
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129125
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129154
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129145
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF2-230
|0 G:(DE-HGF)POF2-234
|2 G:(DE-HGF)POF2-200
|v Composition and Dynamics of the Upper Troposphere and Stratosphere
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a No Peer review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a VDB
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)IEK-7-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21