001     139381
005     20250129092350.0
024 7 _ |a 2128/5560
|2 Handle
037 _ _ |a FZJ-2013-05377
041 _ _ |a English
100 1 _ |a Zhao, Yulong
|0 P:(DE-Juel1)143969
|b 0
|e Corresponding author
111 2 _ |a IEEE Sensors 2013
|c Baltimore
|w USA
245 _ _ |a Numerical modeling of the electromagnetic coupling effects for phase error correction in EIT borehole measurement
260 _ _ |c 2013
336 7 _ |a Lecture
|b lecture
|m lecture
|0 PUB:(DE-HGF)17
|s 139381
|2 PUB:(DE-HGF)
336 7 _ |a Text
|2 DataCite
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Generic
|0 31
|2 EndNote
336 7 _ |a lecture
|2 DRIVER
520 _ _ |a Electrical Impedance Tomography (EIT) applications in geophysics require long electrode chains (25 m) for current injection and potential measurements. Undesired inductive coupling between the wire loops for current injection and potential measurement and capacitive coupling between the cable shield and the soil strongly decrease the phase accuracy of such measurements for frequencies above 100 Hz. Therefore, the bandwidth of EIT field measurements is typically limited to the mHz to Hz range. To overcome this limitation, we derived correction procedures for inductive and capacitive coupling by combining numerical modeling with calibration measurements. The correction procedures were verified with test measurements, where a phase accuracy better than 1 mrad at 10 kHz was achieved.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
700 1 _ |a Zimmermann, Egon
|0 P:(DE-Juel1)133962
|b 1
700 1 _ |a Huisman, Johan Alexander
|0 P:(DE-Juel1)129472
|b 2
700 1 _ |a Treichel, Andrea
|0 P:(DE-Juel1)144273
|b 3
700 1 _ |a Wolters, Bernd
|0 P:(DE-Juel1)133958
|b 4
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 5
700 1 _ |a Kemna, A.
|0 P:(DE-HGF)0
|b 6
773 _ _ |y 2013
856 4 _ |u https://juser.fz-juelich.de/record/139381/files/FZJ-2013-05377-src.doc
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/139381/files/FZJ-2013-05377.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139381/files/FZJ-2013-05377.ps.gz
|y OpenAccess
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/139381/files/FZJ-2013-05377.gif?subformat=icon
|y OpenAccess
856 4 _ |x icon-700
|u https://juser.fz-juelich.de/record/139381/files/FZJ-2013-05377.gif?subformat=icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139381/files/FZJ-2013-05377.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139381/files/FZJ-2013-05377.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/139381/files/FZJ-2013-05377.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:139381
|p openaire
|p open_access
|p driver
|p VDB
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 0
|6 P:(DE-Juel1)143969
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143969
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 1
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129472
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144273
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 4
|6 P:(DE-Juel1)133958
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133958
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 5
|6 P:(DE-Juel1)142562
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)142562
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 1
980 1 _ |a FullTexts
980 _ _ |a lecture
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a VDB
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21