000139387 001__ 139387
000139387 005__ 20250129092507.0
000139387 0247_ $$2Handle$$a2128/5561
000139387 037__ $$aFZJ-2013-05383
000139387 041__ $$aEnglish
000139387 1001_ $$0P:(DE-Juel1)143969$$aZhao, Yulong$$b0$$eCorresponding author$$ufzj
000139387 1112_ $$a73. Jahrestagung der Deutschen Geophysikalischen Gesellschaft (DGG)$$cLeipzig$$d2013-03-04 - 2013-03-07$$wGermany
000139387 245__ $$aNumerical correction of the phase error due to electromagnetic coupling effects in EIT borehole measurements
000139387 260__ $$c2013
000139387 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s139387
000139387 3367_ $$033$$2EndNote$$aConference Paper
000139387 3367_ $$2DataCite$$aOutput Types/Conference Poster
000139387 3367_ $$2DRIVER$$aconferenceObject
000139387 3367_ $$2ORCID$$aCONFERENCE_POSTER
000139387 3367_ $$2BibTeX$$aINPROCEEDINGS
000139387 520__ $$aSpectral Electrical Impedance Tomography (spectral EIT) allows obtaining images of the complex electrical conductivity for a broad frequency range (mHz to kHz). It has recently received increased interest in the field of near-surface geophysics and hydrogeophysics because of the relationships between complex electrical properties and hydrogeological and biogeochemical properties and processes observed in the laboratory with Spectral Induced Polarization (SIP). However, these laboratory results have also indicated that a high phase accuracy is required because many soils and sediments are only weakly polarizable and show small phase angles between 1 and 20 mrad only. It is a challenge to reach this phase accuracy in a broad frequency range for EIT measurements in the field. In the case of borehole EIT measurements, electrode chains (>10 meters) are typically used, which leads to undesired inductive coupling between the electric loops for current injection and potential measurement and capacitive coupling between the electrically conductive cable shielding and the soil. Depending on the electrical properties of the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range.  In this presentation we will i) derive correction procedures for capacitive and inductive coupling effects to extend the applicability of EIT to the kHz range and ii) validate these corrections using controlled laboratory measurements and field measurements. In order to do so, the inductive coupling effect was modeled using electric circuit models and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The measured calibration data set of mutual inductances obtained for each individual electrode chain was combined with the numerically modeled mutual inductances to obtain the mutual inductance for each considered electrode configuration (e.g. cross-hole). The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 1 mrad in the frequency range up to 10 kHz was achieved and also verified in a first field demonstration using a 10 m borehole EIT chain with 8 electrodes. The results of a 1D inversion show that the correction methods increased the phase accuracy considerably.
000139387 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000139387 7001_ $$0P:(DE-Juel1)133962$$aZimmermann, Egon$$b1$$ufzj
000139387 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b2$$ufzj
000139387 7001_ $$0P:(DE-Juel1)144273$$aTreichel, Andrea$$b3$$ufzj
000139387 7001_ $$0P:(DE-Juel1)133958$$aWolters, Bernd$$b4$$ufzj
000139387 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b5$$ufzj
000139387 7001_ $$0P:(DE-HGF)0$$akemna, a.$$b6
000139387 8564_ $$uhttps://juser.fz-juelich.de/record/139387/files/FZJ-2013-05383.pptx$$yOpenAccess
000139387 909CO $$ooai:juser.fz-juelich.de:139387$$pVDB$$pdriver$$popen_access$$popenaire
000139387 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)143969$$aZentralinstitut für Elektronik$$b0$$kZEA-2
000139387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143969$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000139387 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)133962$$aZentralinstitut für Elektronik$$b1$$kZEA-2
000139387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133962$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000139387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000139387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144273$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000139387 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)133958$$aZentralinstitut für Elektronik$$b4$$kZEA-2
000139387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133958$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000139387 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)142562$$aZentralinstitut für Elektronik$$b5$$kZEA-2
000139387 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000139387 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000139387 9141_ $$y2013
000139387 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000139387 920__ $$lyes
000139387 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000139387 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
000139387 9801_ $$aFullTexts
000139387 980__ $$aposter
000139387 980__ $$aUNRESTRICTED
000139387 980__ $$aJUWEL
000139387 980__ $$aFullTexts
000139387 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000139387 980__ $$aI:(DE-Juel1)IBG-3-20101118
000139387 980__ $$aVDB
000139387 981__ $$aI:(DE-Juel1)PGI-4-20110106
000139387 981__ $$aI:(DE-Juel1)IBG-3-20101118