001     139387
005     20250129092507.0
024 7 _ |a 2128/5561
|2 Handle
037 _ _ |a FZJ-2013-05383
041 _ _ |a English
100 1 _ |a Zhao, Yulong
|0 P:(DE-Juel1)143969
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 73. Jahrestagung der Deutschen Geophysikalischen Gesellschaft (DGG)
|c Leipzig
|d 2013-03-04 - 2013-03-07
|w Germany
245 _ _ |a Numerical correction of the phase error due to electromagnetic coupling effects in EIT borehole measurements
260 _ _ |c 2013
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 139387
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Spectral Electrical Impedance Tomography (spectral EIT) allows obtaining images of the complex electrical conductivity for a broad frequency range (mHz to kHz). It has recently received increased interest in the field of near-surface geophysics and hydrogeophysics because of the relationships between complex electrical properties and hydrogeological and biogeochemical properties and processes observed in the laboratory with Spectral Induced Polarization (SIP). However, these laboratory results have also indicated that a high phase accuracy is required because many soils and sediments are only weakly polarizable and show small phase angles between 1 and 20 mrad only. It is a challenge to reach this phase accuracy in a broad frequency range for EIT measurements in the field. In the case of borehole EIT measurements, electrode chains (>10 meters) are typically used, which leads to undesired inductive coupling between the electric loops for current injection and potential measurement and capacitive coupling between the electrically conductive cable shielding and the soil. Depending on the electrical properties of the measured transfer impedances, both coupling effects can cause large phase errors that have typically limited the frequency bandwidth of field EIT measurements to the mHz to Hz range. In this presentation we will i) derive correction procedures for capacitive and inductive coupling effects to extend the applicability of EIT to the kHz range and ii) validate these corrections using controlled laboratory measurements and field measurements. In order to do so, the inductive coupling effect was modeled using electric circuit models and the capacitive coupling effect was modeled by integrating discrete capacitances in the electrical forward model describing the EIT measurement process. The measured calibration data set of mutual inductances obtained for each individual electrode chain was combined with the numerically modeled mutual inductances to obtain the mutual inductance for each considered electrode configuration (e.g. cross-hole). The correction methods were successfully verified with measurements under controlled conditions in a water-filled rain barrel, where a high phase accuracy of 1 mrad in the frequency range up to 10 kHz was achieved and also verified in a first field demonstration using a 10 m borehole EIT chain with 8 electrodes. The results of a 1D inversion show that the correction methods increased the phase accuracy considerably.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
700 1 _ |a Zimmermann, Egon
|0 P:(DE-Juel1)133962
|b 1
|u fzj
700 1 _ |a Huisman, Johan Alexander
|0 P:(DE-Juel1)129472
|b 2
|u fzj
700 1 _ |a Treichel, Andrea
|0 P:(DE-Juel1)144273
|b 3
|u fzj
700 1 _ |a Wolters, Bernd
|0 P:(DE-Juel1)133958
|b 4
|u fzj
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 5
|u fzj
700 1 _ |a kemna, a.
|0 P:(DE-HGF)0
|b 6
856 4 _ |u https://juser.fz-juelich.de/record/139387/files/FZJ-2013-05383.pptx
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:139387
|p openaire
|p open_access
|p driver
|p VDB
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 0
|6 P:(DE-Juel1)143969
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)143969
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 1
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129472
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144273
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 4
|6 P:(DE-Juel1)133958
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133958
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 5
|6 P:(DE-Juel1)142562
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 1
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a VDB
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21