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We investigate the universal orientation-dependent interactions between nonspherical colloidal particles
immersed in a critical solvent by studying the instructive paradigm of a needle embedded in bounded
two-dimensional Ising models at bulk criticality. For a needle in an Ising strip, the interaction on mesoscopic
scales depends on the width of the strip and the length, position, and orientation of the needle. By lattice
Monte Carlo simulations we evaluate the free-energy difference between needle configurations being parallel and
perpendicular to the strip. We concentrate on small but nonetheless mesoscopic needle lengths for which analytic
predictions are available for comparison. All combinations of boundary conditions for the needles and boundaries
are considered which belong to either the “normal” or the “ordinary” surface universality class, i.e., which induce
local order or disorder, respectively. We also derive exact results for needles of arbitrary mesoscopic length, in
particular for needles embedded in a half plane and oriented perpendicularly to the corresponding boundary as
well as for needles embedded at the center line of a symmetric strip with parallel orientation.
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I. INTRODUCTION

A solvent near its bulk critical point induces long-ranged
forces between immersed mesoscopic particles which are
“universal,” i.e., independent of most microscopic details of
the system [1–4]. Apart from a few bulk properties of the
solvent and from its local interactions with the surfaces of the
immersed particles, these forces depend only on the geometry
of the confinement of the critical fluctuations of the solvent
imposed by the particle surfaces, that is, on the sizes, shapes,
positions, and orientations of the particles. Such forces have
been observed experimentally in film geometry for 4He [5,6]
and 3He-4He mixtures [7] near the superfluid transition as
well as for classical binary liquid mixtures near their demixing
transition [8] and, directly, between a single spherical particle
immersed in a binary liquid mixture near the critical demixing
point and its confining planar wall [9,10]. Due to the similarity
of these forces with the Casimir forces arising in quantum
electrodynamics [11,12] they are called critical Casimir forces.

Nonspherical particles near other confinements, such as a
planar wall, experience orientation-dependent forces giving
rise to critical Casimir torques [13,14].

In the following we concentrate on critical solvents be-
longing to the Ising universality class such as demixing
classical binary liquid mixtures. In these systems the particle
surfaces generically prefer one of the two components of the
mixture, i.e., in Ising language one of the two directions (+
or −) of the order parameter is preferred. This preference
is captured in terms of surface fields the strengths of which
under renormalization group flow attains ±∞, corresponding
to fixed surface spins and denoted by ± boundary conditions.
However, using suitable surface preparation one can suppress
this preference, being left with a weakened tendency to demix
near the particle surface [15]. These two types of surface
universality classes [16] are called “normal” (+/−) and
“ordinary” (O), respectively.

Simple universal behavior arises in the scaling region where
the increasing correlation length of the bulk solvent upon

approaching criticality, the distances between the particles and
the lengths characterizing the sizes and shapes of the particles
are much larger than the “microscopic” lengths. The latter
encompass the range of the interactions between the ordering
degrees of freedom as well as the lengths characterizing
corrections to scaling or the crossover from less stable bulk
and surface universality classes [17]. In this region of a clear
separation of “mesoscopic” and “microscopic” lengths, the
forces and torques are given by universal scaling functions
which, apart from the surface universality classes, only depend
on ratios of the characteristic mesoscopic lengths.

Here, our main interest is in the orientation-dependent
interaction of nonspherical particles with boundaries of critical
systems. For the interaction between a prolate uniaxial ellip-
soid and a planar wall with ++ or +− boundary conditions
at the corresponding surfaces the complete universal scaling
functions for the critical Casimir forces, both for the disordered
and ordered bulk phases, have been obtained within mean-field
theory [14]. Beyond mean-field theory such scaling functions
have been determined to a lesser degree of completeness. For
nearby particles, i.e., for closest surface to surface distances
much smaller than their size and radii of curvature, the
interaction can be expressed in terms of the Casimir force
in film geometry by using the Derjaguin approximation. The
scaling function of the latter is available for ++ and +−
surfaces in three [18–20] and two [21] spatial dimensions [22].
For a small spherical [23] or nonspherical [13,24] particle,
with a size much smaller than the bulk correlation length
and the distances to the surfaces of other particles or to
boundaries, the interactions can be obtained from the so-called
small particle expansion [25]. This is one of the field-theoretic
operator expansions for small objects the most well known of
which is the product of two nearby operators first considered
around 1970 by Wilson, Polyakov, and Kadanoff [26,27].
These expansions are to a certain extent reminiscent of the
multipole expansion in electrostatics.

In view of the twofold asymptotic condition, i.e., the particle
being small on mesoscopic scales and large on the microscopic

012137-11539-3755/2013/88(1)/012137(29) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.012137


O. A. VASILYEV, E. EISENRIEGLER, AND S. DIETRICH PHYSICAL REVIEW E 88, 012137 (2013)

scale [25], it is a nontrivial issue under which circumstances
the results of the small particle expansion can be observed for
a given actual system. As a first step to address this issue,
here we investigate whether the results of the expansion can
be observed in the two-dimensional Ising model on a square
lattice with (ferromagnetic) couplingsJ > 0 between nearest-
neighbor spins only and right at the bulk critical point.

In our Monte Carlo (MC) simulations we consider a lattice
of finite size with the form of a strip (or rectangle) comprising
W rows and L columns with an embedded particle resembling
a needle. The directions along the rows and columns define,
respectively, the directions u and v parallel and perpendicular
to the strip of length [28] L and width W . While in the u

direction we impose periodic boundary conditions by means of
couplingsJ between the first and last spin in each row, we cou-
ple all of the spins in the lowest and uppermost row by means of
interactions 0 or ±J to spins which are fixed in the + direction
and are located in outside neighboring rows (see Fig. 1). Thus,
in the v direction, the strip is bounded by free surfaces or
surfaces to which a magnetic field ∝ ±J is applied, i.e., by
surfaces of “ordinary” (O) or “normal” (+/−) character.

In order to generate an embedded needle with O or +/−
boundary conditions and orientation parallel to the strip we
remove couplings (break bonds) between two neighboring
lattice rows or we fix spins within a single lattice row,
respectively (see Fig. 1). In the two cases we define the
length D of the needle as the number [28] of broken bonds
and of fixed spins, respectively. We choose the number to be
even and odd, respectively, in order that the needle centers ×
coincide with the center of an elementary square and a vertex
of the lattice, respectively. This allows us to “turn” the needles
abruptly about their center by 90 degrees upon rearranging the
broken bonds and fixed spins, leading to broken bonds between
neighboring columns and fixed spins within a single column
of the lattice, respectively. In order to be able to position the
centers of O and +/− needles right at the midline of the
strip (as shown in Fig. 1) we choose W to be even and odd,
respectively.

In the simulation we calculate the free-energy expense �F

required to “turn” the needle about its center from an alignment
perpendicular to the strip to the parallel alignment. This is
a measure for the effective torque acting on the needle. In
line with the introductory remarks the free-energy cost �F

depends on the distances of the needle center from the strip
surfaces.

We put the origin of the (u,v) coordinate system at the
midline of the lattice, i.e., for O and +/− needles at the center
of an elementary square and at a vertex so the lattice spins
are located at half odd integer and integer values, respectively,
of the coordinates (see Fig. 1). With this choice the mirror
symmetry of �F in a strip with equal boundary conditions
i = j is described simply by its invariance if the coordinate
v = vN of the needle center changes sign. Here i and j denote
the boundary conditions at the surfaces at v = −W/2 and
v = W/2, respectively. Figure 1 shows the special case in
which the centers × of O and +/− needles coincide with the
origin, i.e., vN vanishes, while in the general case vN takes
integer values for both types of needles.

It is useful to adopt a notation (i[h]j ) which characterizes
the boundary conditions i and j of the strip surfaces as well
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FIG. 1. Needles with their centers denoted by ×, embedded in a
strip of a ferromagnetic Ising model on a square lattice comprising
W rows and L columns [28] of fluctuating spins (empty circles) and
periodic boundary condition in the u direction parallel to the rows.
The two additional rows of spins fixed in the + direction (full circles)
allow one to induce positive or negative magnetic fields at the surfaces
of the strip by coupling them in a ferro- or antiferromagnetic way
to the bottom and top rows of fluctuating spins (see the main text).
[(a) and (b)] Needle of D = 4 broken bonds in a strip with the number
W of rows and the number L of columns equal to W = L = 8. Panel
(a) shows the case (O[O]O) of a strip with two free surfaces (no
coupling to the fixed spins) while panel (b) shows the case (+[O]O)
in which a ferromagnetic coupling to the fixed spins leads to a positive
magnetic field at the lower surface. [(c) and (d)] Needle of D = 5
spins fixed in the + direction (full circles) in a strip with W = 7 and
L = 8. Panel (c) shows the case (O[+]O) while panel (d) shows the
case (+[+]−) with positive and negative magnetic fields induced
at the lower and upper surfaces by ferro- and antiferromagnetic
couplings, respectively. All the needles shown are oriented in the
u direction and have their center × at the midline v = 0 of the
strip, halfway between the strip surfaces, i.e., vN = 0 for the vertical
position of the center of the needle. This requires to choose W even
(odd) for needles of broken bonds (of fixed spins) so spins reside
at half odd integer (integer) values of v. Needles oriented in the v

direction are shown in Figs. 6 and 7.

as the boundary condition h of the embedded needle. For
example, (+[+]−) denotes the case of a needle of spins fixed
in the + direction which is embedded in a strip with outside
couplings J and −J at the lower and upper surfaces inducing
strip surfaces i = + and j = −, respectively, as shown in
Fig. 1(d).

For completeness we consider also the case of a strip with
periodic boundary conditions in both u and v directions by
coupling, in both the W rows and in the L columns, the
corresponding end spins to each other with strength J . This
is a strip without surfaces and is equivalent to a square lattice
on a torus.

If D,W,L, and the closest distance between the needle
and the strip boundaries [corresponding to aN and a< in
Figs. 2(a) and 2(b), respectively] are “sufficiently” large on
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FIG. 2. (Color) Continuum [28] description of the geometry of a
needle in a strip. In the strip of length L and width W the embedded
needle of length D is oriented parallel (a) and perpendicular (b) to
the strip boundaries at v = ±W/2. The needle center × is located
at u = uN = 0 and v = vN < 0 at a distance aN ≡ vN + W/2 > 0
from the lower boundary. In the perpendicular orientation the closer
end of the needle has a distance a< ≡ aN − D/2 > 0 (and the farther
end a distance a> = a< + D) from the lower boundary.

the scale of the lattice constant, the free-energy cost �F in the
lattice model is expected to display universal scaling behavior.
As mentioned above, in this case �F/(kBT ) depends only
on the universality classes (i[h]j ) of the boundaries and the
needle and on three independent ratios of D,W,L, and vN . In
this case one can adopt a mesoscopic continuum description
with sharp strip boundaries at v = ±W/2 since lengths only
differing by approximately a lattice constant can be identified.
Likewise, different microscopic definitions of the length of the
needles, such as the number D − 1 of bonds between the fixed
spins of a + needle (instead of its D fixed spins), lead to the
same mesoscopic length D. Figure 2 shows the various lengths
characterizing the geometry of a needle in a strip within the
continuum description.

For small mesoscopic needles and a long strip, i.e., for D �
W � L, the universal behavior can be predicted by means
of the small particle expansion for particles of needle shape
(“small needle expansion”). As mentioned earlier, it is one of
our main goals to quantitatively investigate whether present
Monte Carlo simulations can access this regime.

For a needle perpendicular to the boundary of a half plane
or embedded at the midline of a symmetric (i = j ) strip of
infinite length, we derive the analytic form of the universal
scaling behavior of the critical Casimir forces in the complete
range of mesoscopic needle lengths D, increasing from small
to large. This aspect is interesting in its own right and also
allows us to estimate the range of validity of the small needle
expansion.

The predictions of the small needle expansion for �F in
critical Ising strips and our analytic results for needles of
arbitrary length are presented in Secs. II and III, respectively.
In Sec. IV we describe the lattice model in more detail and
explain how one obtains via Monte Carlo simulations the
results for �F which are compared with the analytic scaling
predictions in Sec. V. Our results are summarized in Sec. VI.
In Appendices A and B we present the input material and

the derivations which are necessary in order to obtain the
predictions and results of Secs. II and III, respectively. For
the convenience of the reader we present a summary and
discussion of our symbols and notations in Appendix C.

Besides for critical systems [13,14] the orientation-
dependent interaction between a wall and a nonspherical
mesoscopic object (such as an ellipsoid, a semi-infinite plate,
or a spherocylinder) has been studied also for quantum
electrodynamics [29,30] and for purely entropic systems. In the
latter case it is induced by spherical so-called depletion agents
with hard-body interaction only [31] or by free nonadsorbing
polymer chains [24]. As for correlation-induced forces, we
mention also the attractive effective force generated by needles
(rigid rods) acting as depletion agents [32] and the repulsive
force generated by a nonadsorbing polymer chain grafted to
the tip of a (model-) atomic force microscope near a repulsive
wall [33]. Finally, we note that the critical Casimir force
between inclusions in the two-dimensional Ising model has
been suggested as a possible mechanism for the presence of
long-ranged forces between membrane bound proteins [34],
which are typically noncircular.

II. SMALL NEEDLE EXPANSION

Here we specialize the small particle expansion for non-
spherical particles (see Refs. [13] and [24]) to the present case
of a needle embedded in the two-dimensional Ising model and
apply it to the geometry of a needle in a strip.

We consider a needle of small mesoscopic length D,
centered at rN , and pointing along the unit vector n. Inserting
the needle into the d = 2 Ising model at its critical point [35]
changes the Boltzmann weight of the corresponding field
theory by a factor exp(−δH), which can be represented by
the operator [27] expansion [13,24]

exp(−δH) ∝ 1 + SI + SA, (2.1)

where

SI =
∑

O=φ,ε

A(h)
O

[(
D

2

)xO

+ 1

16xO

(
D

2

)2+xO

�rN

]
O(rN ) + · · ·

(2.2)

with �rN
= ∇2

rN
and

SA =
∑

k,l=1,2

(
nknl − δkl

2

)[
−π

2

(
D

2

)2

Tkl(rN ) +
∑

O=φ,ε

A(h)
O

× 3

8(1 + xO)

(
D

2

)2+xO

∂(rN )k ∂(rN )lO(rN )

]
+ · · ·

(2.3)

are the isotropic and anisotropic contributions, respectively.
Here O = φ is the order-parameter-density operator and O =
ε is the difference of the energy-density [36] operator e and its
average 〈e〉bulk in the unbounded plane (bulk) at bulk criticality
(so their bulk averages 〈φ〉bulk and 〈ε〉bulk vanish at the bulk
critical point). They are normalized such that the bulk two-
point correlation functions [35] are [37]

〈O(r)O(r′)〉bulk = |r − r′|−2xO , (2.4)
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where (in d = 2) xφ = 1/8 and xε = 1 are their scaling
dimensions [38]. The affiliation of the surface of the needle to
the “ordinary” (h = O) or to the “normal” (h = + or h = −)
surface universality class enters into Eqs. (2.1)–(2.3) via the
universal half-plane amplitudeA(h)

O . The latter is the amplitude
of the profile [35] of O in the half plane, 〈O〉half plane =
A(h)

O a−xO , as function of the mesoscopic distance a from the
boundary line of type h and is given by [38]

A(O)
φ = 0, A(+)

φ = −A(−)
φ = 21/8,

(2.5)
A(O)

ε = −A(+)
ε = −A(−)

ε = 1/2.

The properties A(O)
φ = 0 and A(−)

φ = −A(+)
φ of the amplitudes

of the order parameter profile are obvious from the up-
down symmetry of the Ising spins [35]. The energy density
profile increases (decreases) upon approaching an “ordinary”
(“normal”) boundary where the Ising spins are more disordered
(more ordered) than in the bulk [36]. This implies the positive
(negative) sign of the corresponding amplitude A(O)

ε (A(+)
ε =

A(−)
ε ). The absolute values of A(O)

ε and A(+)
ε = A(−)

ε are
the same, due to duality properties [39,40]. In Eq. (2.3) the
contribution from the stress [38] tensor Tkl is the same [41] for
all needle types h = O,+,−.

The ellipses in Eqs. (2.2) and (2.3) stand for contributions
of fourth order and higher [42] in the small mesoscopic length
D. The common factor of proportionality on the right-hand
side of Eq. (2.1) is given [35] by 〈exp(−δH)〉bulk because the
bulk averages of SI and SA vanish at the bulk critical point.

For a two-dimensional Ising model with boundaries the
insertion free energy of the needle depends on its position and
orientation with respect to these boundaries. Removing the
needle from the bulk model and inserting it in the bounded one
at a distance from the boundaries much larger than D changes
the free energy by F (rN,n) = −kBT ln〈(1 + SI + SA)〉BM

where BM denotes the bounded model in the absence of the
needle. We shall concentrate on the geometry of a needle in
a strip as described in the Introduction (see Fig. 2) for which
BM ≡ ST is the strip with boundaries (i,j ) in the absence of
the needle and correspondingly use the notation [28]

rN = (uN,vN ), n = (n||,n⊥) (2.6)

for the center and direction vectors of the needle with the
components parallel and perpendicular to the strip. The density
averages 〈O〉ST at rN which enter 〈SI + SA〉ST are, within this
model, independent of uN and in the scaling region given by

〈O(rN )〉ST = W−xOf
(i,j )
O (vN/W,W/L), (2.7)

where f are universal scaling functions and f
(j,i)
O follows from

f
(i,j )
O upon replacing vN/W by −vN/W .

Due to the continuity equation of the stress tensor [38] its
average 〈Tkl(rN )〉(i,j )

ST in the strip is independent of both uN

and vN and follows from the universal, scale-free, and shape-
dependent contribution [43] �

(i,j )
ST (L/W ) to the free energy

FST per kBT of the strip ST without the needle,

〈[T⊥⊥,T‖‖]〉(i,j )
ST = −[L−1∂W ,W−1∂L]�(i,j )

ST (L/W )

= [1,−1]W−2�i,j (W/L). (2.8)

Like in Eq. (2.6), here ‖ and ⊥ denote directions parallel and
perpendicular to the u axis of the strip,

�i,j (W/L) = (d/dδ)�(i,j )
ST (δ), δ = L/W, (2.9)

and the off-diagonal components 〈T⊥‖〉ST = 〈T‖⊥〉ST vanish
by symmetry. Cardy [44] has obtained an explicit form
for all functions �

(i,j )
ST (δ). While an extensive discussion of

�i,j (W/L) is deferred to Appendix A 2, here we mention
a few basic properties. Obviously �

(i,j )
ST and �i,j are sym-

metric in i and j . For a long strip the leading behavior
�

(i,j )
ST (L/W → ∞) = �i,j (0) × δ of �

(i,j )
ST is linear in δ with

�i,j (0) ≡ �i,j given [38] by �i,j = (π/48)[−1,−1,23,2] for
(i,j ) = [(O,O),(+,+),(+,−),(+,O)]. While due to the (+ ↔
−) symmetry the equalities �+,+(1/δ) = �−,−(1/δ) and
�+,O(1/δ) = �−,O(1/δ) hold for arbitrary 1/δ, the equality
�O,O = �+,+ holds only for infinitely long strips [45], i.e.,
1/δ = 0.

For the free energies F‖ and F⊥ associated with removing
the needle from the bulk system and inserting it in the strip
with its center at rN and with its orientation n parallel and
perpendicular, respectively, to the u axis, Eqs. (2.1)–(2.3)
and (2.6) yield

F‖ ≡ F (rN,n = (1,0)) = −kBT ln Z‖ (2.10)

and

F⊥ ≡ F (rN,n = (0,1)) = −kBT ln Z⊥ (2.11)

with

Z‖ = 1 + ζI − ζA, Z⊥ = 1 + ζI + ζA, (2.12)

where

ζI =
∑

O=φ,ε

A(h)
O

[(
D

2W

)xO

+ 1

16xO

(
D

2W

)2+xO

× ∂2

∂ (vN/W )2

]
f

(i,j )
O

(
vN

W
,
W

L

)
+ · · · (2.13)

and

ζA = −π

2

(
D

2W

)2

�i,j

(
W

L

)
+ 1

2

∑
O=φ,ε

3A(h)
O

8(1 + xO)

×
(

D

2W

)2+xO ∂2

∂ (vN/W )2 f
(i,j )
O

(
vN

W
,
W

L

)
+ · · ·

(2.14)

follow from SI and SA in Eqs. (2.2) and (2.3), respectively.
This implies the expression

�F = −kBT ln(Z‖/Z⊥) (2.15)

for the free energy required to turn the needle about its center
from its orientation perpendicular to the u axis of the strip to
the parallel orientation.

In the expansions in Eqs. (2.13) and (2.14) a term ∝DX is
of the order of (D/W )X near the strip center, where |vN | �
W , and of the order of (D/aN )X near the strip boundaries,
where aN ≡ (W/2) − |vN | � W . These expansions for the
partition functions Z‖ and Z⊥ are useful if D/W and D/aN

are much smaller than 1. However, expanding the free energies
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F‖, F⊥, and �F in powers of D is not always useful for the
comparison with our simulation data. While D/W � 1 and
D/aN � 1 can readily be achieved in the MC simulations for a
needle with a mesoscopic length D of many lattice constants, at
present it seems to be unrealistic to achieve (D/W )1/8 � 1 and
(D/aN )1/8 � 1. Thus, we expand the logarithm in Eq. (2.15)
in terms of powers of D only in those cases in which the
power Dxφ ≡ D1/8 does not appear [46] in Eq. (2.13). These
are the cases with an “ordinary” needle h = O, for which
A(h)

φ vanishes, and with a “normal” needle in a strip with
two “ordinary” boundaries i = j = O, for which the density
profile in Eq. (2.7) vanishes for the order parameter O = φ.
Expanding the logarithm in these cases yields

�F = �Fl + �Fnl + · · · (2.16)

with the leading contribution

�Fl

kBT
= −π

(
D

2W

)2

�i,j (W/L) (2.17)

and the next-to-leading contribution

�Fnl

kBT
=

(
D

2W

)3

A(h)
ε

[
π�i,j (W/L) + 3

16

∂2

∂(vN/W )2

]
× f (i,j )

ε

(
vN

W
,
W

L

)
. (2.18)

The ellipses in Eq. (2.16) are of order D4.
For completeness we also consider a double periodic

rectangle or strip with periodic boundary conditions in both the
u and v directions, i.e., the surface of a torus. In this boundary-
free case at Tc the average of φ vanishes in the strip, that of ε is
independent of both u and v, and for the average of the stress
tensor Eq. (2.8) again applies with �i,j (W/L) replaced by
a function �P (W/L) = (d/dδ)�(P )

ST (δ) with the infinite strip
limit �P (0) ≡ �P = −π/12 (see Sec. V A and Appendix A 1
for more details). For the double periodic strip Eqs. (2.16)–
(2.18) also apply if �i,j (W/L) and f

(i,j )
ε (vN/W,W/L) are

replaced by the corresponding stress amplitude �P (W/L)
and the energy density scaling function f (P )

ε (W/L), which
is independent of vN/W .

Explicit expressions for the functions �(W/L) are known
[44] for all types of strips considered here. Concerning the
scaling functions fO the dependence on the aspect ratio W/L is
known [47,48] for f (P )

ε while in the presence of boundaries the
functions f

(i,j )
O (vN/W,W/L) are, to the best of our knowledge,

known only [49] for W/L = 0, i.e., for strips of infinite [50]
length L = ∞. For the convenience of the reader we collect
these expressions in Appendix A.

For the special case in which the distance aN = vN + W/2
of the center of the small needle of type h from the boundary
of type i at v = −W/2 (see Fig. 2) is much smaller than
the width of the infinitely long strip, i.e., for the case D �
aN and W/aN,L/aN → ∞, the above expressions for the
needle in the strip with free energies F ≡ F (i[h]j ) reduce to
those for the needle in the half plane v + W/2 ≡ a > 0 with
free energies F ≡ F (i[h]) where Eqs. (2.13) and (2.14) are

replaced by

ζI =
∑

O=φ,ε

A(h)
O A(i)

O

[
ϑxO + 1 + xO

16
ϑ2+xO

]
+ · · · ,

(2.19)
ζA =

∑
O=φ,ε

A(h)
O A(i)

O
3xO
16

ϑ2+xO + · · · ,

and Eqs. (2.17) and (2.18) by

�Fl

kBT
= 0,

�Fnl

kBT
= A(h)

ε A(i)
ε

3

8
ϑ3, (2.20)

where

ϑ = D

2aN

. (2.21)

As mentioned above, these relations only apply if 0 � ϑ � 1.

III. NEEDLES OF ARBITRARY LENGTH

The small needle expansion is valid if the mesoscopic length
D of the needle is “small” compared to the other mesoscopic
lengths of the system, i.e., within the present model much
smaller than the width and length of the strip and the distance
of the needle from the two boundaries. Given the limited set of
operators appearing in Eqs. (2.2) and (2.3), it is an open issue
what in this context “small” means quantitatively. In order to
get a clue, in this section we study a few situations in which
results for an arbitrary mesoscopic needle length D can be
obtained. These results, which we derive in Appendix B, are
interesting also in their own right.

(i) Needle in half plane
We consider a needle of universality class h embedded in

the half plane, oriented perpendicularly to the boundary line
of surface universality class i and with its center located at
a distance aN from the boundary. Here we also introduce the
distance a< = aN − (D/2) of the closer end of the needle from
the boundary [compare Fig. 2(b)] so one has

ϑ ≡ D

2aN

= 1

1 + (2a</D)
(3.1)

for the length ratio ϑ defined in Eq. (2.21). Note that
ϑ tends to 0 and 1 for a small (or distant) needle with
D � aN and a long (or close) needle with a< � D, re-
spectively. Both D and a< are assumed to be mesoscopic
lengths, i.e., both are large on the microscopic scale. We
are interested in the free energy F⊥ ≡ F

(i[h])
⊥ = kBTf ⊥

i[h](ϑ)
required to insert the needle from the bulk into the half plane
and in the corresponding Casimir force −(∂/∂aN )F (i[h])

⊥ ≡
−(∂/∂a<)F (i[h])

⊥ = (kBT /aN )g⊥
i[h](ϑ) with [51] universal scal-

ing functions fi[h] and gi[h]. The above partial derivatives are
taken at fixed needle length D. The force pushes the needle
away from (towards) the boundary if gi[h] is positive (negative).

Due to symmetries, the identities F
(+[+])
⊥ = F

(−[−])
⊥ ,

F
(+[O])
⊥ = F

(−[O])
⊥ , and F

(h[i])
⊥ = F

(i[h])
⊥ hold so exchanging

the surface universality classes of the needle and of the
boundary leaves the free energy unchanged. These follow
from the (+ ↔ −) and the duality [52] symmetries of the
Ising model and are consistent with the symmetries of the
corresponding small needle expression which follows from
Eqs. (2.11), (2.12), and (2.19).
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(ia) For i = h = O the effective interaction has the form
[see the paragraph containing Eqs. (B2)–(B4)]

F
(O[O])
⊥
kBT

= f ⊥
O[O](ϑ) = −2−5 ln

(1 + ϑ)5

(1 − ϑ)3
(3.2)

and is attractive within the entire range 0 � ϑ � 1.
For ϑ � 1, Eq. (3.2) is in agreement with the corre-
sponding result F

(O[O])
⊥ /(kBT ) = −ϑ/4 + ϑ2/25 − ϑ3/12 +

O(ϑ4) of the small needle expansion which follows from
Eqs. (2.11), (2.12), and (2.19). For ϑ ↗ 1, F

(O[O])
⊥ /kBT →

−2−5 × 3 ln[(22/3D)/a<] shows a logarithmic dependence.
The logarithmic divergence of the free energy for D/a< → ∞
is related to the long-ranged behavior ∝1/a< of the Casimir
force for a needle of infinite length D = ∞, which is addressed
in Eq. (3.9); its integral diverges for a< → ∞ (while for a
needle of finite length D, the force decays more rapidly than
1/a< as a< increases beyond D so the integral is finite).

(ib) For i = +, h = O the interaction is always repulsive
and has the form

F
(+[O])
⊥
kBT

= 2−5 ln
(1 + ϑ)3

(1 − ϑ)5
, (3.3)

i.e., the same form as Eq. (3.2) but with ϑ replaced by −ϑ (see
Appendix B 1).

(ic) For the Casimir forces, in Appendix B 2 we find
expressions which apply to arbitrary combinations (i,h) of
the universality classes. For later convenience we present them
here in two forms,

− ∂

∂aN

F
(i[h])
⊥
kBT

= − ∂

∂aN

F
(O[O])
⊥
kBT

− 1

2aN

1

1 − ϑ2
τ̃i,h(ϑ)

≡ − 1

2aN

1

1 − ϑ2

[
1

12
− ϑ2

24
− ρi,h(ϑ)

]
,

(3.4)

which are equivalent due to Eq. (3.2) and the definition

τ̃i,h(ϑ) ≡ 1
12 (1 − 6ϑ + ϑ2) − ρi,h(ϑ). (3.5)

The dependence of ρi,h on ϑ is given by

ρi,h(ϑ) = 4π�i,h(1/δ)

[K∗(ϑ)]2
= πδ2�i,h(1/δ)

4 [K(ϑ)]2
(3.6)

with the variable 1/δ replaced by the function

1/δ = K∗(ϑ)/[4K(ϑ)] (3.7)

of ϑ . Here

K∗(ϑ) ≡ K(ϑ̄), ϑ̄ ≡
√

1 − ϑ2, (3.8)

and K is the complete elliptic integral function (see
Eqs. (8.113.1) and (8.113.3) in Ref. [53]). The quantity
�i,h(1/δ) in Eq. (3.6) is the well-studied [44] Casimir (or
stress tensor) amplitude for a strip ST without needle, with
boundaries (i,h), and finite aspect ratio W/L = 1/δ, which
was introduced in Eqs. (2.8) and (2.9) and is given explicitly
in Appendix A 2.

The symmetries of F
(i[h])
⊥ addressed above Eq. (3.2) are

reflected in Eqs. (3.4)–(3.8) by the symmetries of �i,j (1/δ)
discussed in the text following Eq. (2.9).

For the special cases (i,h) = (O,O) and (+,O) we have
checked that Eqs. (3.4)–(3.8) are consistent with the simple
expressions given in Eqs. (3.2) and (3.3). In particular, τ̃O,O(ϑ)
vanishes for all ϑ .

The present results for a needle embedded in a half
plane involve, via �i,h(1/δ), knowledge about the strip ST
without needle but with a finite aspect ratio because the two
geometries are related by a conformal mapping, as explained
in Appendix B 2.

Varying ϑ from 0 to 1, for all combinations (i,h)
Eqs. (3.4)–(3.8) provide the complete crossover of the force
−(∂/∂aN )F (i[h])

⊥ /kBT as the length D and the position
(determined by the distances aN or a<) of the needle in the
half plane change from small and remote from the boundary
to large and close to the boundary. Equation (3.7) tells us that
the corresponding change in the geometry of the strip ST is
from remote (δ ↘ 0) to close (δ ↗ ∞) strip boundaries, as
expected.

In the small needle limit ϑ ↘ 0 the quantity τ̃i,h vanishes
[compare Eq. (A13)] and the expansion for small ϑ is provided
by Eqs. (A8), (A10), and (A12) and the form of σ in Eq. (B22).
We check in the paragraph containing Eq. (B26) that this
expansion is consistent with the small needle expansion in
Eqs. (2.11), (2.12), and (2.19).

In the long needle limit ϑ ↗ 1 one has τ̃i,h → 16[�i,i(0) −
�i,h(0)]/π with �i,h(0) given in the text following Eq. (2.9)
so [54]

−(∂/∂aN )F (i[h])
⊥ /kBT → [−3,−3, 61, 5]/(32a<),

(i[h]) = [(O[O]),(+[+]),(−[+]),(+[O])].

(3.9)

The behavior ∝a−1
< of the force per kBT acting on the needle of

infinite length D = ∞ follows easily [54] from comparing its
scaling dimension with that of the only remaining mesoscopic
variable a<. Unlike the expansion of the force for a small
needle in which fractional powers such as a−1

N (D/aN )1/8 may
occur, the expansion around the long needle limit involves only
contributions for which Eq. (3.9) is multiplied with positive
integer powers of a</D ≡ α [compare Eqs. (A7) and (A11),
the relation between κ and ϑ̄ in Eq. (B22), and the relation
ϑ̄2 = 4α(1 + α)/(1 + 2α)2, which follows from Eq. (3.1)].

In the limit ϑ ↗ 1 the free energy per kBT tends to

F
(i[h])
⊥ /(kBT ) ≡ f ⊥

i[h]

→ ([−3,−3,61,5]/32) ln (Ci,h/(1 − ϑ)),

(i[h]) = [(O[O]),(+[+]),(−[+]),(+[O])], (3.10)

where 1/(1 − ϑ) → D/(2a<) in terms of a<. Here Ci,h

are numbers, in particular CO,O = 25/3 and C+,O = 23/5

[see Eqs. (3.2) and (3.3)]. This logarithmic behavior of
F

(i[h])
⊥ /(kBT ) for the long perpendicular needle should be

compared with the power-law behavior F
(i[h])
‖ /(kBT ) →

�i,hD/a< of the free energy for a long needle aligned at a
small distance a< parallel to the boundary, which is obtained
by turning the perpendicular needle about that end which is
closer to the boundary. For a particle of circular shape [23]
with a radius R much larger than the distance a< between the
closest points of the circle and the boundary, the interaction
free energy F (i[h])/(kBT ) → π�i,h(2R/a<)1/2 exhibits, as
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FIG. 3. (Color) Free-energy cost per kBT , f ⊥
i[h], to transfer a needle of length D and universality class h from the unbounded plane (bulk)

to the half plane, with an orientation which is perpendicular to the boundary of the half plane of universality class i. The dependence on
ϑ = D/(2aN ), with aN as the distance of the needle center from the boundary, is shown for various combinations (i[h]). The exact results for
arbitrary D/2 � aN are compared with the small needle approximation [SNA, Eq. (B33)], which is valid for small ϑ , and with the long needle
behavior for ϑ → 1 as given by Eq. (3.10). The interaction between the boundary and the needle is attractive [repulsive] for equal [different]
universality classes i = h [i �= h] shown in panels (b) and (c) [(a) and (d)].

expected intuitively, a power-law exponent the value of which
lies in between those corresponding to perpendicular and
parallel needles. Unlike the long perpendicular needle, for
the long parallel needle and the large circle the exact results of
the interaction free energies quoted above are found already
within the Derjaguin approximation and exhibit an amplitude
proportional to �i,h ≡ �i,h(0). For all three particles (the
perpendicular and parallel needles as well as the circle) the
particle-boundary interaction is attractive (repulsive) for i = h

(i �= h).
Figure 3(a) shows a comparison between the exact result

for F
(−[+])
⊥ /(kBT ) ≡ f ⊥

−[+](ϑ) which follows from Eq. (3.4)
upon integration [51] and its “small needle approximation”
(“SNA”) [compare Ref. [42] and Eqs. (B27) and (B33)].
The approximation reproduces the exact result very well for
ϑ < ϑ0 with 0.3 � ϑ0 � 0.4 while it fails for ϑ � 0.6, where
it shows an unphysical maximum. For the strip situation
(−[+]j ) with the center of the perpendicular needle at
vN , the question arises down to which proximity of the
+ needle to the lower − boundary of the strip one can
expect the small needle approximation to be reasonably valid.
Identifying the distance aN = D/(2ϑ) in the half plane with
the distance W/2 − |vN | ≡ W/2 + vN in the strip suggests
the approximation for F

(−[+]j )
⊥ to be valid if |vN |/W is

smaller than [1 − D/(Wϑ0)]/2. For 0.3 � ϑ0 � 0.4 and the
value D/W = 21/101 used in our MC simulations (see cf.
Sec. V C) this rough argument predicts that |vN |/W should

be kept smaller than about 1/6 or 1/4, i.e., vN should be
kept rather close to the midline v = 0. For the anisotropy
�F (−[+]j ) of the free energy of the needle in the strip there
is even more uncertainty concerning the validity of the SNA
because the corresponding comparison for F

(−[+])
‖ is lacking,

i.e., the counterpart of Fig. 3(a) for a needle parallel to the
boundary of the half space is missing.

Figures 3(b)–3(d) show the corresponding results for the
free energies kBTf ⊥

i[h] with (i,h) = (O,O), (+,+), and (+,O).
For i = h and i �= h, f ⊥

i[h] is negative and positive, respectively.
(ii) Needle in an infinitely long symmetric strip
Here we consider a needle of universality class h and with

parallel orientation || at the center line v = 0 of an infinitely
long (i,i) strip of width W . We determine the free-energy cost
F‖ ≡ F

(i[h]i)
‖ = kBTf

‖
i[h]i(θ ) and the corresponding disjoining

force −(∂/∂W )F (i[h]i)
‖ = (kBT /W )g‖

i[h]i(θ ) between the two
boundary lines of the strip upon inserting the needle from
the bulk with parallel orientation. Here the partial derivative
is taken with the needle length D kept fixed. The disjoining
force increases (decreases) if gi[h]i is positive (negative). The
(i,h) symmetries of F

(i[h]i)
‖ are those of �i,h, as can be inferred

from Eq. (3.15). The results depend on the length ratio [55]

θ = πD

W
(3.11)

and provide the crossover from the small needle behavior for
θ � 1, consistent with the small needle expansion to the long
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needle behavior for θ � 1. In the latter case, one has

F
(i[h]i)
‖
kBT

≡ f
‖
i[h]i → D

[
2
�i,h(0)

(W/2)
− �i,i(0)

W

]
= θ [−1,−1, 31, 3]/16, (3.12)

(i,h) = [(O,O),(+,+),(−,+),(+,O)]

because upon inserting a long parallel needle with its center at
u = v = 0 transforms, within the interval −D/2 < u < D/2,
the (i,i) strip of width W into two independent adjacent (i,h)
strips of width W/2 each.

(iia) For i = h = O the free energy to insert the needle
from the bulk reads

F
(O[O]O)
‖
kBT

= −θ

8
+ 1

16
ln

sinh θ

θ
. (3.13)

(iib) For i = +, h = O we find

F
(+[O]+)
‖
kBT

= θ

8
+ 1

16
ln

sinh θ

θ
, (3.14)

which is Eq. (3.13) with θ replaced by −θ . Equations (3.13)
and (3.14) are derived in Appendix B 1.

(iic) For arbitrary (i,h) we find (see Appendix B 2)

− ∂

∂W

F
(i[h]i)
‖
kBT

= − ∂

∂W

F
(O[O]O)
‖
kBT

− 1

4W

θ

t
τ̃i,h(t)

≡ 1

4W

{
−1

4
+ θ

[
1

24

(
1

t
+ t

)
+ 1

t
ρi,h(t)

]}
,

t ≡ tanh(θ/2), (3.15)

θ

f
|| −

[+
] −

(θ
)

exact

SNA
SNAE 3

(2 θ )1/8

Eq.(3.12)

1
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10−3 10−2 10−1 1 10

FIG. 4. (Color) Free-energy cost per kBT , f
‖
−[+]−, to remove a

needle of universality class + and length D from the bulk and
insert it along the midline of an infinitely long strip with (−,−)
boundary conditions and width W as a function of θ = πD/W [see
Ref. [51] and Eq. (3.15)]. The exact result for arbitrary length ratio θ

is compared with the small needle approximation [SNA, Eq. (B34)],
valid for small θ , and with the long needle behavior according to
Eq. (3.12). Also shown are the first term, (2θ )1/8, and the sum
of the first three terms (2θ )1/8 + θ1/4/23/4 + (2θ )3/8/3, denoted as
“SNAE3”, in the expansion of f

‖
−[+]− in terms of powers of θ for

θ � 1 [see Eqs. (B29) and (B32)]. Expanding f
‖
−[+]− proves to be

less successful than the SNA within which exp(−f
‖
−[+]−) is expanded

and which agrees with the exact result up to θ ≈ 1. The first term
(dash-double-dotted green line) approaches the exact result (full red
line) for θ → 0 only very slowly.

θ

|f
|| (

θ
) |

exact

Eq.(3.12)

SNA

(− [+ ]− )

(+[+]+)

(+ [O ]+ )

(O [O ]O )

10− 3

10−2

10− 1

1

10

10 2
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FIG. 5. (Color) Same as described in the caption to Fig. 4 for all
four independent combinations (i[h]i) of a needle of universality
class h placed along the midline of an (i,i) strip as function of
θ = πD/W . Full, dash-dotted, and dotted lines correspond to the
exact results, the SNA, and Eq. (3.12), respectively. For h = i (h �= i),
f

‖
i[h]i is negative (positive), decreasing (increasing) with increasing

θ , and implies a negative (positive) contribution −∂WF
(i[h]i)
‖ =

(kBT /W )θ∂θf
‖
i[h]i to the disjoining force. Thus, the attractive Casimir

interaction [see Eq. (2.8)] with the negative universal disjoining force
−∂WkBT �

(i,i)
ST = �i,ikBT L/W 2 = −(π/48)kBT L/W 2 between the

(i,i) boundaries of the long strip without the needle becomes even
more attractive (less attractive) due to the presence of the needle with
h = i (h �= i).

where τ̃i,h(t) and ρi,h(t) are the functions τ̃i,h(ϑ) and ρi,h(ϑ)
from Eqs. (3.5) and (3.6), respectively, evaluated at ϑ = t .
Equations (3.13) and (3.14) as well as Eq. (3.15) are consistent
with the small needle expansion for small θ [see Eqs. (B29)]
and with Eq. (3.12) for large θ .

Figure 4 shows a comparison between the exact result for
F

(−[+]−)
‖ /(kBT ) ≡ f

‖
−[+]−(θ ) which follows from Eq. (3.15)

via integration [51] and its small needle approximation
[compare Ref. [42] and Eqs. (5.4), (B30), (B32), and (B34)].
For the value θ = 21π/101 = 0.653 as used in our MC
simulations (see Sec. V C) there is good agreement. However,
we have no such comparison for F

(i[h]i)
⊥ .

All four possible independent free energies kBTf
‖
i[h]i(θ )

for needle insertion are collected in Fig. 5. They are negative
(positive) for i = h (i �= h). In this double logarithmic plot
the power laws as obtained for small θ from the small needle
expansion and for large θ from the long needle expression
[Eq. (3.12)] appear as straight lines.

(iii) Periodic strip
Finally, we consider an infinitely long strip of width W

with periodic boundary condition in v direction. In this case
the free-energy cost to insert a needle parallel to the strip reads
(see Appendix B 1)

F‖
kBT

= 1

16
ln

sinh θ

θ
. (3.16)

This result holds for any needle universality class h =
O,+,− and it is valid for an arbitrary ratio θ = πD/W .
Equation (3.16) should be compared with Eq. (3.13). For
θ � 1 the right-hand side of Eq. (3.16) tends to θ/16 = D ×
[�h,h(0) − �P (0)]/W . This is consistent with the periodic
strip of width W being transformed, by inserting a parallel
needle, to a (h,h) strip of width W within a u interval of length
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D. Consistent with the small needle expansion, for θ � 1 the
right-hand side of Eq. (3.16) tends to θ2/96 + O(θ4).

IV. FREE-ENERGY ANISOTROPY FROM MONTE
CARLO SIMULATIONS

The anisotropic shape of a bounded critical system induces
orientation-dependent properties for embedded nonspherical
particles. In Sec. II the operator expansion has provided the
asymptotic scaling properties for a “small” but “mesoscopic”
particle in a “large” system. In the present section we address
the issue regarding the extent to which these asymptotic
properties capture the actual behavior in specific critical
model systems. Concerning the needles studied here, we want
to check whether the asymptotic predictions of Sec. II for
�F can already be observed within a lattice model with
numerous, but not too many, rows and columns so the model
is amenable to simulations. In this section we describe how
to set up the corresponding Monte Carlo simulations and to
calculate �F . In Sec. V we compare these simulation data
with the corresponding analytic predictions. This allows us to
judge both the achievements and the limitations of the small
needle approximation.

A. Model

For the simulation we use the lattice version of the Ising
strip described in the Introduction and shown in Fig. 1. The
implementation of the double periodic boundary conditions is
obvious. Beyond that, here we describe in more detail strips
with boundaries (i,j ). In this case, the lattice Hamiltonian HST

for strips without a needle reads (see Sec. I)

HST /J = −
∑

〈u,v;u′,v′〉
Ju,v;u′,v′ su,v su′,v′

− �
(1)
i

∑
u

su,−(W+1)/2 su,−(W−1)/2

− �
(1)
j

∑
u

su,(W+1)/2 su,(W−1)/2 (4.1)

with J > 0 and Ju,v;u′,v′ = 1 for nearest neighbors (denoted
by 〈u,v; u′,v′〉) and zero otherwise. The fluctuating Ising spins
s = ±1 reside on the vertices of the square lattice consisting
of W rows and L columns with periodic boundary conditions
in the u direction. The two last terms generate “ordinary” or
“normal” (+/−) boundaries near v = −W/2 and v = W/2
by means of fixed values su,−(W+1)/2 = su,(W+1)/2 = 1 for the
spins in the two additional outside rows and by choosing
independently �

(1)
i and �

(1)
j equal to 0 (“ordinary”) or ±1

(+/− “normal”). This serves as a microscopic realization
of all the pairs (i,j ) of strip boundary types considered in
Sec. II which exhaust all possible surface universality classes
in d = 2 (except the “extraordinary” boundary type [39,45]
corresponding to infinitely strong couplings between surface
spins).

For reasons given in the Introduction and shown in
Fig. 1, for “ordinary” (“normal”) needles the number W

of rows is taken to be even 2, 4, 6,. . . (odd 1, 3, 5,. . .)
and the components of the lattice vertices u, v are half odd
integers ±1/2,±3/2,±5/2, . . . (integers 0,±1,±2, . . .). The

components u = uN and v = vN of the needle centers × are
integers for both types of needles.

In order to be able to compare the Monte Carlo data with the
results of Sec. II we consider the system at its bulk critical point
Tc with J /(kBTc) = 1

2 ln(
√

2 + 1), where J is the coupling
constant scaled out of HST [Eq. (4.1)].

Inserting a needle of class h = O or h = ± into strips
amounts to appropriately removing bonds or fixing spins in
accordance with Fig. 1 via additional terms in the Hamiltonian.
For given surface universality classes (i,j ) of the strip,
universality class h, needle length D, and the coordinate vN of
the center of the needle, we introduce the notation

H = H0 ≡ HST + H(h)
⊥ (4.2)

and

H = H1 ≡ HST + H(h)
‖ (4.3)

for the total lattice Hamiltonian H corresponding to the needle
being oriented perpendicularly and parallel, respectively, to
the u axis. The explicit forms of H(h)

⊥ and H(h)
‖ will be given

in Eqs. (4.8), (4.9), and (4.11)–(4.18).

B. Numerical algorithm

1. Coupling parameter approach

We consider two systems with the same configurational
space C (i.e., number and spatial connectivity of spins)
and with Hamiltonians H0 and H1 as given in Eqs. (4.2)
and (4.3). The corresponding free energies are F0,1 =
− 1

β
ln

∑
C exp(−βH0,1); β = 1/(kBT ) is the inverse thermal

energy. We are interested in the free-energy difference �F =
F1 − F0.

For the computation of this free-energy difference we
use the coupling parameter approach [56]. To this end, we
introduce the crossover Hamiltonian Hcr(λ), which depends
on the coupling parameter λ,

Hcr(λ) = H0 + λ (H1 − H0) = H0 + λ�H, (4.4)

with the Hamiltonian difference �H = H1 − H0, which in
the present context is H(h)

‖ − H(h)
⊥ . The derivative of the cor-

responding crossover free energy Fcr(λ) = − 1
β

ln
∑

C exp ( −
βHcr(λ)) with respect to the coupling parameter reads

dFcr(λ)

dλ
≡ F ′

cr(λ) =
∑

C �He−βHcr(λ)∑
C e−βHcr(λ)

= 〈�H〉cr(λ),

(4.5)

where 〈�H〉cr(λ) is the Hamiltonian difference �H averaged
with respect to Hcr(λ). Therefore, one can compute the free-
energy difference by integrating 〈�H〉cr with respect to λ,

�F = F1 − F0 =
∫ 1

0
F ′

cr(λ)dλ =
∫ 1

0
〈�H〉cr (λ)dλ. (4.6)

For the forms of H0 and H1 given by Eqs. (4.2) and (4.3),
respectively, one has

�H = H(h)
‖ − H(h)

⊥ ,

Hcr ≡ H(h)
cr = HST + (1 − λ)H(h)

⊥ + λH(h)
‖ . (4.7)
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FIG. 6. (Color) Bond arrangements for a needle (O) of D = 4 broken bonds with the center (×) at (uN,vN ) = (0,0) at the midline v = 0 of
a strip with L = W = 6: (a) for the perpendicular orientation of the needle with Hamiltonian H0; (b) for the parallel orientation of the needle
with Hamiltonian H1; (c) for the crossover Hamiltonian H(O)

cr (λ) which interpolates between (a) for λ = 0 and (b) for λ = 1. Bonds of strength
J = 1 are indicated by thin black lines. Broken bonds (J = 0) are not shown. The bonds indicated by green dashed and blue dot-dashed
lines have strengths λ and 1 − λ which increase and decrease, respectively, as λ increases. As in Fig. 1 the fluctuating spins su,v = ±1 with
|v| � (W − 1)/2 are indicated by empty circles while the fixed spins su,±(W+1)/2 = 1 in the two additional outside rows are indicated by full
circles. The nearest-neighbor bonds between the fixed and fluctuating spins are indicated by thick magenta lines. For the lower and upper
boundary i and j they have the strengths �

(1)
i and �

(1)
j , respectively, where �(1) equals 0 for an O boundary and ±1 for a +/− boundary.

2. Needle of broken bonds

Here we consider the combination (i[O]j ) corresponding
to an “ordinary” needle which consists of an even number
D of broken bonds in a strip with an even number W of
rows. Figure 6 shows the example of a needle with D = 4
broken bonds in the center of a L × W = 6 × 6 strip. The
Hamiltonians H0 and H1 for perpendicular and parallel needle
orientation have the same form as the right-hand side of
Eq. (4.1) but with reduced interaction constants Ju,v;u′,v′

which depend suitably on the coordinates (u,v) and (u′,v′)
of nearest-neighbor spins.

Choosing without restriction uN = 0, the needle with
center at (0,vN ) is inserted in a perpendicular orientation
by “breaking,” i.e., removing, the D lattice bonds which at
v = vN ± 1/2, vN ± 3/2, . . . , vN ± (D − 1)/2 extend from
u = −1/2 to u = 1/2. This is accomplished by adding

H(O)
⊥ /J =

D∑
k=1

s−1/2,vN −(D+1)/2+k s1/2,vN −(D+1)/2+k ≡
∑
〈inc.〉
(4.8)

to the Hamiltonian HST/J without the needle [see Eq. (4.2)].
Similarly, for the parallel orientation of the needle, one has to
add

H(O)
|| /J =

D∑
k=1

s−(D+1)/2+k,vN −1/2 s−(D+1)/2+k,vN +1/2 ≡
∑

〈decr.〉
(4.9)

so �H = H(O)
‖ − H(O)

⊥ . Figures 6(a) and 6(b) illustrate these
configurations for the special case vN = 0.

The sums in Eqs. (4.8) and (4.9) have been characterized
by subscripts 〈inc.〉 and 〈decr.〉 because in the crossover
Hamiltonian following from Eq. (4.7),

H(O)
cr (λ) = H̃(O) − λJ

∑
〈inc.〉

− (1 − λ)J
∑

〈decr.〉
, (4.10)

they appear with a prefactor −λ and −(1 − λ), respectively,
representing sums of products of spins coupled by nearest-
neighbor bonds with strengths λJ and (1 − λ)J which
increase and decrease, respectively, as λ increases. Here
H̃(O) ≡ HST + J

∑
〈inc.〉 +J

∑
〈decr.〉 equals HST in Eq. (4.1)

but with both types of nearest-neighbor bonds missing which
are broken in the perpendicular or the parallel orientation of
the needle. This corresponds to Fig. 6(c) with both dashed
and dash-dotted bonds removed (so in H̃(O) only those bonds
of HST remain which are outside a hole with the shape
of a cross). In H(O)

cr (λ), however, the two types of missing
bonds are replaced by the bonds of increasing and decreasing
strength, as illustrated in Fig. 6(c) by the green dashed and
blue dash-dotted lines. This obviously leads to the crossover
from the perpendicular to the parallel needle orientation as λ

increases from 0 to 1.
On this basis, following the steps described by Eqs. (4.4)–

(4.7) allows us to calculate F‖ − F⊥ ≡ F1 − F0 = �F for the
combination (i[O]j ).

3. Needle of fixed spins

In this subsection we consider the lattice version of the case
(i[+]j ) in which a needle consisting of an odd number D of
spins fixed in the + direction is embedded in a strip with an
odd number of rows W .
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FIG. 7. (Color) Bond arrangements for a needle of D = 5 spins
fixed in the + direction with the needle center (×) at (uN,vN ) =
(0,0) at the midline v = 0 of a strip with L = 8 and W = 7 for the
perpendicular direction of the needle (a) and for the parallel direction
of the needle (b). The strengths �(1) of the bonds near the strip
boundaries are as explained in the caption to Fig. 6.

Figures 7(a) and 7(b) show the example of a needle with
D = 5 in the center of an L × W = 8 × 7 strip. The partition
functions and free energies of these lattice models remain
unchanged if the bonds between the fixed needle spins and
their, in all, 2D + 2 fluctuating nearest neighbors are removed
and these 2D + 2 neighbors are coupled instead with the bulk
strengthJ to a single exterior spin s0 = +1 which is kept fixed
in the + direction. The coupling to this single spin or to the D

fixed spins has the same effect on the fluctuating spins, namely
that of a magnetic field acting on the 2D + 2 neighboring
spins. Once this coupling to s0 is in place, for the following
it is convenient to replace each of the D fixed needle spins
by a freely fluctuating spin, i.e., free of any couplings. This
changes the free energy per kBT only by D ln 2, independent
of the orientation of the needle and, thus, drops out of �F . For
the above example discussed in Fig. 7 this alternative model
is illustrated in Figs. 8(a) and 8(b), with the couplings to the
external spin denoted by northeast arrows.

The corresponding additional terms in the Hamiltonian can
be written as

H(+)
⊥ =

∑
〈zero〉

+
∑̂
〈inc.〉

−
(+)∑

〈one〉
−

(+)∑
〈decr.〉

(4.11)

and

H(+)
|| =

∑
〈zero〉

+
∑̂

〈decr.〉
−

(+)∑
〈one〉

−
(+)∑

〈inc.〉
(4.12)

(so �H = H(+)
‖ − H(+)

⊥ ), where the sums∑
〈zero〉

= s0,vN

(
s−1,vN

+ s1,vN
+ s0,vN +1 + s0,vN −1

)
, (4.13)

∑̂
〈inc.〉

=
(D−1)/2∑

k=1

[
s0,vN +k

(
s−1,vN +k + s1,vN +k

)
+ s0,vN −k

(
s−1,vN −k + s1,vN −k

)
+ s0,vN +ks0,vN +k+1 + s0,vN −ks0,vN −k−1

]
, (4.14)

(a) (b)

(c)
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2
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FIG. 8. (Color) Panels (a) and (b) describe how to mimic
the configurations discussed in Fig. 7 by means of couplings
(northeast arrows) to a fixed external spin s0 = +1; panel (c)
shows the arrangement of bonds in the crossover Hamiltonian
H(+)

cr (λ) [see Eq. (4.19)] with their strengths indicated in the right
margin. The arrangement reduces to that of (a) and (b) for λ = 0
and λ = 1, respectively. For further explanations see the main
text.

and

∑̂
〈decr.〉

=
(D−1)/2∑

k=1

[
sk,vN

(
sk,vN +1 + sk,vN −1

)
+ s−k,vN

(
s−k,vN +1 + s−k,vN −1

)
+ sk,vN

sk+1,vN
+ s−k,vN

s−k−1,vN

]
(4.15)

contain products of nearest-neighbor lattice spins while the
sums

(+)∑
〈one〉

= s−1,vN +1 + s1,vN +1 + s−1,vN −1 + s1,vN −1, (4.16)

(+)∑
〈decr.〉

= s0,vN +(D−1)/2+1 + s0,vN −(D−1)/2−1 + s−1,vN
+ s1,vN

+
(D−1)/2∑

k=2

[
s−1,vN +k + s1,vN +k + s−1,vN −k + s1,vN −k

]
,

(4.17)
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and
(+)∑

〈inc.〉
= s(D−1)/2+1,vN

+ s−(D−1)/2−1,vN
+ s0,vN +1 + s0,vN −1

+
(D−1)/2∑

k=2

[
sk,vN+1 + sk,vN−1 + s−k,vN+1 + s−k,vN −1

]
(4.18)

contain products of a lattice spin and the fixed external spin
s0 [which has the value s0 = +1 and, thus, does not appear in
Eqs. (4.16)–(4.18)]. Here

∑
〈zero〉 contains the products of the

center (×) spin of the needle with its four nearest-neighbor
spins which correspond to lattice bonds broken in both
the perpendicular and parallel needle orientation [compare

Figs. 8(a) and 8(b)]. The products in
∑̂

〈inc.〉 and
∑̂

〈decr.〉
correspond to the remaining nearest-neighbor bonds which are
broken in the perpendicular and parallel needle orientations,
respectively. The four terms in

∑(+)
〈one〉 correspond to the bonds

between the external spin and those four lattice spins which
are coupled to it in both the perpendicular and the parallel
needle configurations [compare Figs. 8(a) and 8(b)]. The sums∑(+)

〈decr.〉 and
∑(+)

〈inc.〉 contain the terms which correspond to the
rest of the bonds to the external spin in the perpendicular and
the parallel needle orientations, respectively.

As in the previous subsection the notation for the various
sums reflects the modulus of their corresponding prefactors in
the crossover Hamiltonian

H(+)
cr (λ) = H̃(+) − λJ

∑̂
〈inc.〉

− (1 − λ)J
∑̂

〈decr.〉

−J
(+)∑

〈one〉
− λJ

(+)∑
〈inc.〉

− (1 − λ)J
(+)∑

〈decr.〉
. (4.19)

The first term H̃(+) ≡ HST + J
∑

〈zero〉 +J
∑̂

〈inc.〉 +
J

∑̂
〈decr.〉 corresponds to a strip with a cross-shaped hole

where the bonds belonging to
∑

〈zero〉,
∑̂

〈inc.〉, and
∑̂

〈decr.〉
are missing [i.e., in Fig. 8(c) this means that the dashed
and dash-dotted bonds and all the arrows are removed]. In
H(+)

cr (λ) the contributions due to the two last types of bonds
missing in H̃(+), i.e.,

∑̂
〈inc.〉 and

∑̂
〈decr.〉 carry the prefactors

−λJ and −(1 − λ)J of increasing and decreasing strengths,
respectively. Moreover, bond contributions are added which
couple the lattice spins contained in

∑(+)
〈one〉,

∑(+)
〈inc.〉, and∑(+)

〈decr.〉 with strengths 1, λ, and 1 − λ, respectively, to
the external spin s0 = 1. For L = 8, W = 7, D = 5, and the
needle center × at vN = 0 at the midline of the strip, the
various bond strengths in H(+)

cr (λ) are shown in Fig. 8(c),
which clearly illustrates the crossover from the perpendicular
to the parallel needle orientation considered in Figs. 8(a)
and 8(b) as λ increases from 0 to 1.

4. Details of the numerical implementation

For the sequential generation of system configurations we
have used the hybrid Monte Carlo method [57]. One step
consists of updating a Wolff cluster [58] followed by L × W/4
attempts of Metropolis updates [59] of randomly chosen spins

and of additional (D + 3)2 updates of randomly chosen spins
in the square of size (D + 3) × (D + 3) with the center at
position (0,vN ).

In order to determine the dependence of the free energy on
vN , we have used system sizes 1000 × 100 and 1000 × 101
for (i[O]j ) and (i[+]j ) needles, respectively. For thermal-
ization we have used 1.5 × 107 MC steps, followed by the
computation of the thermal average using 8 × 107 MC steps.
These latter MC steps have been split into 16 intervals, which
facilitates estimation of numerical inaccuracy.

In order to determine the aspect ratio dependence of the free
energies we have used various numbers of MC steps (split into
eight intervals for estimating again the numerical inaccuracy)
for various system sizes, varying from 6 × 106 MC steps for
L = 4000 to 2.4 × 109 for L = 200. We have used one-fifth
of these MC steps in order to achieve thermalization.

Concerning the numerical integration over the crossover
variable λ, for every selected set of parameters [i.e., type
of needle and boundary conditions (i[h]j ), L,W,D, and
vN ] we have performed computations for 32 points λk =
k
31 , k = 0,1, . . . ,31 and then we have carried out the numerical
integration by using the extended version of Simpson’s rule.

V. COMPARISON OF ANALYTIC RESULTS
WITH SIMULATION DATA

Here we compare the small needle predictions from Sec. II
for the quasitorque �F with corresponding results obtained
by the Monte Carlo simulations described in Sec. IV. On the
one hand, this allows us to assess the performance of the
truncated form [42] of the small needle approximation, i.e.,
to determine the smallness of the mesoscopic needle length
D needed in order to be able to neglect higher-order terms in
this expansion. On the other hand, good agreement signals that
all the mesoscopic distances and lengths, including D, chosen
in the simulations turn out to be large enough for the lattice
system to lie within the universal scaling region.

A. Aspect ratio dependence for the double periodic strip

For a needle in a double periodic strip, one can study the
full dependence of �F [Eq. (2.15)] on the aspect ratio W/L.
Due to the symmetry of these boundary conditions, �F keeps
its modulus but changes its sign as the values of W and L are
exchanged. This implies that �F vanishes for W = L. Within
the small needle approximation, its quantitative behavior
follows from the remarks in the text following Eq. (2.18)
yielding [see Eqs. (2.16)–(2.18)]

�F

kBT
� �Fl + �Fnl

kBT
= −π

(
D

2W

)2

�P (W/L)

×
[

1 +
{
−1

2
,

1

2

}
D

2W
f (P )

ε (W/L)

]
(5.1)

for an {“ordinary,” “normal”} needle with A(h)
ε = {1/2,−1/2}

[see Eq. (2.5)]. Equation (5.1) is consistent with the sign
change mentioned above because both �

(P )
ST [see Eqs. (2.8)

and (2.9)] and 〈ε〉(P )
ST = W−1f (P )

ε (W/L) [see Eq. (2.7) with
xε = 1] remain unchanged upon exchanging the values of
W and L, implying �P (W/L)/W 2 = −�P (L/W )/L2 and
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FIG. 9. (Color) Normalized quasitorque �F = F|| − F⊥
[Eq. (2.15)] acting on a small mesoscopic needle of length [28]
D in a double periodic strip P as a function of the aspect ratio
W/L of the strip. �F > 0 implies that there is a preference for
the perpendicular orientation. �F vanishes at W/L = 1 and is
antisymmetric around this point. The black dotted line denotes its
limit for W/L = 0. For “ordinary” [O] and “normal” [+] needles
with D = 20 and D = 21, respectively, the simulation data (green
squares and magenta diamonds) agree quite well with the analytic
prediction (red dash-dotted line) according to the first term on the
right-hand side of Eq. (5.1). The fact that the (green) squares lie
above the (magenta) diamonds agrees with the tendency arising
from the second term �Fnl in Eq. (5.1) due to f (P )

ε < 0. However,
the splitting between [O] and [+] due to �Fnl is quite small.
[Considering D = 20 and W = 100, the explicit form of f (P )

ε given
in Eqs. (A2)–(A4) leads at, e.g., W/L = 0.2 and W/L = 0.5 to the
values 1 ± 0.003 and 1 ± 0.027, respectively, of the square bracket
in Eq. (5.1)]. A quantitatively reliable check of this small splitting
effect requires accurate data from lattice systems with larger values
of D,W , and L which are closer to the asymptotic scaling limit than
the ones presently available. For more details see the main text.

f (P )
ε (W/L)/W = f (P )

ε (L/W )/L. Since, due to Appendix A 1,
−sgn(L − W ) × �P (W/L) is positive and f (P )

ε is negative,
Eq. (5.1) implies the following:

(i) Both “ordinary” and “normal” needles prefer to align
perpendicularly to the longer axis of the double periodic strip.
(Concerning related effects, see Ref. [60].)

(ii) While in leading order ∝D2 the strength of this
preference is independent of the needle type h, it is strength-
ened (weakened) for an “ordinary” (“normal”) needle by the
correction of order D3.

A quantitative comparison of the aspect ratio dependence
predicted in Eq. (5.1) with our simulation data is provided
in Fig. 9. This figure shows data [61] for the normalized
quantity [�F/(kBT )]/(D/W )2 within the range 0 < D/W <

1/2. For the “ordinary” needle of “broken bonds” the data
were obtained from systems with W = 100 and D = 10
and 20. The data for the “normal” needle of “fixed spins”
stem from systems with W = 101 and D = 11 as well as
D = 21. The data for D = 20 and D = 21 are in rather
good agreement with the expression [�Fl/(kBT )]/(D/W )2,
as predicted according to Eq. (5.1) and Appendix A 1 for the
leading-order contribution ∝D2, shown as the red dash-dotted
line. The data for the “ordinary” needle are indeed slightly
larger than those for the “normal” needle, as predicted by
the next-to-leading-order contribution ∝D3 in Eq. (5.1). The

stronger deviations of the data for D = 10 and D = 11 from
the analytic approximation presumably indicate that these
smaller needle lengths lie outside the mesoscopic scaling
region required [25] for the validity of Eq. (5.1).

B. Dependence of the free-energy anisotropy on the spatial
position of needles in strips.

In strips with boundaries �F depends on the position vN

of the needle in the strip. Here we consider strips of infinite
length L, either with arbitrary boundaries (i,j ) and containing
an “ordinary” needle or with boundaries (O,O) and containing
a “normal” needle. In all these cases �F � �Fl + �Fnl is
predicted to have the form given by Eqs. (2.16)–(2.18).

1. Ordinary needles

While �Fl does not depend on vN and is given by Eq. (2.17)
with �i,j given in the text following Eq. (2.9), in the cases
(i[O]j ) one has

�Fnl

kBT
= 1

256

(
πD

W

)3

gi,j , (5.2)

which depends on vN via the following simple expressions for
gi,j :

gO,O = 3(cos V )−3 − (5/3)(cos V )−1

g+,+ = −gO,O
(5.3)

g+,O = −gO,+ = (tan V )[3(cos V )−2 + (1/3)]

g+,− = g−,+ = −[3(cos V )−3 + (7/3)((cos V )−1 − 4 cos V )],

with V = πvN/W . They follow upon inserting f
(i,j )
ε from

Eq. (A14) and A(h)
ε ≡ A(O)

ε = 1/2 [see Eq. (2.5)] into
Eq. (2.18).

Figure 10 compares our simulation data for the cases
(i[O]j ) with the corresponding analytic predictions for var-
ious positions vN of the needle and for various boundary
conditions (i,j ) of the strip. The plots show the data for
[(�F − �Fl)/(kBT )]/(D/W )2 with �F obtained from a sys-
tem with L = 1000,W = 100, and D = 20. The comparison
with [�Fnl/(kBT )]/(D/W )2 ≡ ci,j following from Eqs. (5.2)
and (5.3) and shown by lines is very favorable (i.e., �F is
captured well by �Fl + �Fnl), except for the case (−[O]+)
in which it is only fair. According to Eqs. (5.2) and (5.3) one
has ci,j = (π3/256)(D/W )gi,j .

In order to visualize the approach of the limit of infinite strip
length L = ∞, Figs. 11 and 12 show [61] the dependence
of the quasitorque on the aspect ratio W/L for needles of
length D = 10 or D = 20 with their center vN = 0 at the
midpoint of a strip of width W = 100. The cases (O[O]+) and
(O[O]−) should lead to the same �F , due to the (+ ↔ −)
symmetry [35] of the Ising model, and �Fnl should vanish for
vN = 0, due to Eq. (2.18) and Ref. [49]. These properties are
reflected rather well by the data in Fig. 11 for D = 20 (shown
as squares and diamonds), which are close to the values of
[�Fl/(kBT )]/(D/W )2 (shown as the full black line), equal to
−π2/96 for W/L = 0 and about 5% smaller for W/L = 1/2.
Here we discard the data for W/L � 0.1 which carry large
error bars. This should be compared with the case (O[O]O)
discussed in Fig. 12 where in a strip of width W = 100 the
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FIG. 10. (Color) Quasitorque �F acting on a small mesoscopic
“ordinary” needle O in a long strip with boundaries (i,j ) corre-
sponding to the cases (i[O]j ). This plot shows its dependence on
the position vN of the needle in the strip and on the boundary
conditions (i,j ). The lines are suitably normalized expressions cij

[see Eqs. (5.2) and (5.3) and the text following the latter one]
for �Fnl which, according to Eq. (5.3), are symmetric around
vN/W = 0 for (i,j ) = (O,O), (+,+), and (−,+) but antisymmetric
for (i,j ) = (O,+). In order to obtain the numerical data we have
computed �F by means of the coupling parameter approach (Sec. IV)
and then subtracted the analytic expression (2.17) for �Fl. There is
very favorable agreement of the simulation data, which correspond
to W/L = 0.1, with the analytic predictions for W/L = 0. The case
(−[O]+) is exceptional in that for it the agreement is only fair, i.e., in
this case there are sizable corrections to �F = �Fl + �Fnl beyond
�Fnl . The statistical error bars are comparable with the symbol sizes
and, therefore, they are omitted.

data for the needle of length D = 20 (shown by squares) attain
much closer the asymptotic value (π2/192)(1 + 20π/100)
of [(�Fl + �Fnl)/(kBT )]/(D/W )2 predicted for vN = 0 and
L = ∞ (shown as the uppermost straight line) as L increases,
i.e., as W/L becomes smaller.

2. Normal needles in strips without broken symmetry

Now we consider the (equivalent) cases (O[+]O) and
(O[−]O) of a “normal” needle with h = + or − in an (O,O)
strip. Figure 13 shows data [61] for [�F/(kBT )]/(D/W )2

for such a needle of length D = 21 at various posi-
tions vN in a strip with L = 1000 and W = 101. They
compare favorably with the corresponding analytic expres-
sion −(π/4)�O,O + (π3/256)(D/W )(−gO,O ) for [(�Fl +
�Fnl)/(kBT )]/(D/W )2 with L = ∞, which is shown as
dashed line. This expression follows from Eqs. (2.16)–(2.18)
by repeating analogously the line of arguments leading to
Eqs. (5.2) and (5.3). Here the sign in front of gO,O differs
from that in Eq. (5.2) for the “ordinary” needle because
A(+)

ε = A(−)
ε = −A(O)

ε [Eq. (2.5)]. In strips of infinite length
L the pseudotorques �F (vN ) for the present case (O[+]O)
and for the case (+[O]+) considered above are identical.
This follows from a duality argument similar to the one in
Ref. [45], is in agreement with the expression �Fl + �Fnl

in Eqs. (2.16)–(2.18), and is quite well reflected by the
simulation data in Figs. 10 and 13. Concerning the aspect ratio
dependence, for W/L � 0.1 the data for the case (O[+]O)
of a “normal” needle with vN = 0 and D = 21 (shown by
diamonds in Fig. 12) have the tendency to approach the
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FIG. 11. (Color) Dependence of the quasitorque �F on the
aspect ratio W/L of the strip for (O[O]+) and (O[O]−) boundary
conditions with the needle at the strip center vN = 0. In these cases the
next-to-leading contribution �Fnl vanishes [49] for arbitrary W/L

and the simulation data for D = 20 (squares and diamonds) are
indeed close to the values given by −π�O,+(W/L)/4 (full black line)
corresponding to the leading contribution �Fl which are −π 2/96
for W/L = 0 and about 5% percent smaller for W/L = 1/2 [see
Eqs. (A5), (A7), and (A9)]. This decrease is too weak to be reflected by
the present simulation data. Due to the inherent (+ ↔ −) symmetry,
one has �F (O[O]+) = �F (O[O]−) for arbitrary values of D, vN , W , and
L. This exact identity is embodied in the form of the corresponding
lattice Hamiltonians �H and Hcr(λ) in Sec. IV. However, the results
for the thermal average 〈�H〉cr(λ) and its integral �F in Eq. (4.6),
calculated by means of the statistical Monte Carlo method, violate
this identity within the numerical inaccuracy. Note that the ensuing
deviations in the above data are of tolerable size, at least for the larger
value of D.

predicted limiting value (π2/192)(1 − 21π/101) (indicated in
Fig. 12 by the lowest horizontal straight line).

C. “Normal” needles in strips with broken symmetry

In this subsection we consider a “normal” needle with
h = + embedded in strips with at least one “normal”
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FIG. 12. (Color) As described in the caption to Fig. 11 but
for the cases (O[O]O) and (O[+]O) in which, for L = ∞,
[(�Fl + �Fnl)/(kBT )]/(D/W )2 equals (π 2/192)[1 + πD/W ] and
(π 2/192)[1 − πD/W ], respectively, so the leading contributions
(dashed line) are the same. For small W/L the simulation data
for D = 20,W = 100 and D = 21,W = 101 (green squares and
magenta diamonds) are indeed close to the corresponding uppermost
and lowest horizontal line, respectively.
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FIG. 13. (Color) Dependence of the quasitorque �F on the
position vN of the needle in the (O[+]O) case. The simulation data
(triangles) agree well with the analytic prediction (dashed line) given
by �Fl + �Fnl (see the main text).

boundary. These are the boundary conditions (i,j ) =
[(+,+),(−,−),(+,−),(+,O),(−,O)] for which the order pa-
rameter profiles 〈φ〉ST = W−1/8f

(i,j )
φ in Eq. (2.7) are nonva-

nishing and ζI in Eq. (2.13) contains a contribution ∝D1/8.
In these cases we do not compare our simulation data with
the expanded analytic form of �F , because confining this
expansion to the two leading powers of D, as in Eq. (2.16),
is expected to be insufficient for reaching agreement with
presently accessible simulation data. As explained there, we
rather set out to compare the simulation data with the full
expression SNA following from Eqs. (2.10)–(2.15). While we
disregard the terms of order D4 denoted by the ellipses [42]
in Eqs. (2.13) and (2.14), we leave the logarithm in Eq. (2.15)
unexpanded.

We illustrate this point for the case (−[+]−), i.e., a +
needle embedded in a (−,−) strip. Figure 14 shows [61]
that [�F/(kBT )]/(D/W )2 as obtained from simulations for a
needle (with D = 21 and located in the center of a strip with
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FIG. 14. (Color) Quasitorque �F acting on a + needle in the
center of a (−,−) strip. We show simulation data for needles of length
D = 11 and 21 in strips of width W = 101 and of various lengths
L. The data for D = 21 (diamonds) agree quite well with the SNA
prediction −0.4143 (dash-dotted line) for a strip of infinite length
as explained in the first two paragraphs of Sec. V C. For the smaller
needle of length D = 11 there is a significant discrepancy between
the simulation data and the SNA prediction −0.3072 (dashed line)
for a strip of infinite length.

W = 101) agrees, for smaller aspect ratios W/L, quite well
with the prediction −0.4143 for L = ∞ (see the diamonds and
the dash-dotted bottom line in Fig. 14). The prediction follows
by inserting the present value θ = 21π/101 = 0.653 of θ ≡
πD/W into the SNA expression �F/(kBT ) = − ln(Z‖/Z⊥),
where

Z‖,⊥ = 1 − (2θ )1/8 − 2−6+1/8θ17/8 + 2−3θ + 2−9θ3 + (1,−1)

× [−2−7(1/3)θ2 + 2−6+1/8(1/3)θ17/8 − 2−103θ3],

(5.4)

see Eqs. (2.5) and (2.12)–(2.14) with the value �−,− = −π/48
taken from the text following Eq. (2.9) as well as Eqs. (A14)
and (A15). For this value of θ the validity of the SNA is
confirmed by Fig. 4, as far as the contribution F‖ to �F is
concerned [compare the discussion in the paragraph following
Eq. (3.15)]. This should be contrasted with the prediction
−0.0017 (as compared with −0.4143, see above), which would
follow from �F being truncated after the leading and the
next-to-leading order in D, i.e., from (�Fl + �Fnl)/kBT =
[(2θ )2 − (2θ )17/8]/(3 × 28) [by using again Eq. (5.4)] and
which would disagree with the simulation data by a factor
of about 250.

The reasonable agreement between the simulation data for
D = 21 and the SNA persists for the dependence on the needle
position vN shown as the squares and the green dashed line in
Fig. 15, provided |vN |/W remains small.

However, for |vN |/W � 0.15 an even qualitative deviation
develops in that the analytic approximation predicts a point
of inflection and a minimum which is not supported by the
simulation data. We attribute this failure to inadequacies of
this approximation near the strip boundary which have been
discussed in detail for F⊥ in the half plane [see the paragraph
in Sec. III addressing Fig. 3(a)]. In particular, the unphysical
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FIG. 15. (Color) Quasitorque �F acting on a small mesoscopic
“normal” needle + in a long strip in which one or both boundaries
break the Ising symmetry. We show the dependencies of �F on
the position vN of the needle in the strip and on the boundary
conditions (i,j ) of the strip. There is reasonable agreement of the
simulation data for W/L = 0.1 with the analytic predictions of the
small needle approximation for W/L = 0 which are discussed in the
first paragraph of Sec. V C. For the case (−[+]−) the SNA can be
trusted only for |vN |/W smaller than ≈0.15 (see the discussion in
the last but one paragraph of Sec. V C). The statistical error of the
simulation data is comparable with the symbol sizes.
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minimum of the green dashed line in Fig. 15 is related to the
maximum of the SNA result shown in Fig. 3(a).

This dependence on vN/W is shown in Fig. 15 also for
the other cases (−[+]O),(+[+]O),(+[+]−), and (+[+]+)
of a + needle embedded in strips with at least one “normal”
boundary. Also in these cases the dependencies of the data on
vN/W are reproduced reasonably well by the SNA.

VI. SUMMARY AND CONCLUDING REMARKS

A critical solvent such as a binary liquid mixture at its con-
tinuous demixing transition induces a long-ranged, so-called
critical Casimir interaction between immersed particles which
is universal on mesoscopic length scales. For nonspherical
particles, the interaction depends not only on their sizes and
distances among each other but also on their shapes and mutual
orientations. We have studied a critical system belonging to
the Ising bulk universality class in two spatial dimensions and
particles of needle shape.

As described in the Introduction we have considered Ising
strips at the bulk critical point with an embedded needle
which is oriented either parallel or perpendicularly to the
symmetry axis of the strips. For such systems our analysis
benefits from the wealth of knowledge accumulated for the
two-dimensional Ising model at criticality and the comparative
ease to implement a needle along a row or column of the
square lattice. The corresponding effective interaction between
the needle and the two strip boundaries is probably the
simplest example to check by Monte Carlo simulations
the range of validity of asymptotic analytic predictions for
the orientation dependence of critical Casimir interactions
between nonspherical mesoscopic particles which go beyond
the Derjaguin approximation.

In Sec. IV and Figs. 1, 6, 7, and 8 we explain how
to implement in the lattice model boundary properties at
the two confining surfaces of the strip and for the needle,
which locally induce one of the two demixing bulk phases
[“normal” surface universality classes + (or −)] or induce
disorder and suppress demixing [“ordinary” surface class O].
The geometrical features of the corresponding continuum
description are explained in Fig. 2.

Primarily, we analyze the free energy �F = F‖ − F⊥
required at bulk criticality to turn the needle from an alignment
perpendicular to the strip (with free energy F⊥) to parallel
alignment (with free energy F‖). Thus, one has �F > 0 and
�F < 0 if the needle prefers the perpendicular and parallel
alignment, respectively. �F depends on the length D of the
needle, the width W and length L of the strip, the distance vN of
the needle center from the midline of the strip, and the surface
universality classes h of the needle and (i,j ) of the two
boundaries of the strip. Here we consider needles of small
mesoscopic length D for which predictions are available from
the so-called small needle expansion explained in Sec. II.

Before presenting an itemized summary of the quantitative
comparison with the simulations, we point out a few qualitative
observations. For the needle it is advantageous to reside in a
spatial region and take an orientation which suits its boundary
condition.

(i) First, consider a needle of universality class h in a half
plane with the boundary belonging to surface universality

class i. The needle will prefer the vicinity of this boundary if
i = h. Since in the case i = + (i = O) the boundary-induced
order (disorder) increases upon approaching the boundary
[62], this leads to an attractive force between needle and
boundary. Since both increases are stronger than linear, for
a fixed needle center in both cases the needle will adopt an
orientation perpendicular to the boundary of the same class.
Likewise, for different universality classes i �= h of the needle
and the boundary, the force will be repulsive and for a fixed
center the needle will orient parallel to the boundary [13].
These orientational preferences depend on the needle position,
increasing and decreasing, respectively, with decreasing and
increasing distance aN of the needle center from the boundary.

(ii) In a strip there is an additional qualitative effect in
that there is a contribution to the orientational preference
of the needle which is independent of its position vN in
the strip but depends on the combination (i,j ) of surface
universality classes of the two strip boundaries. In a long
strip this contribution favors an alignment of the needle
perpendicular (parallel) to the boundaries if they belong to
the same (different) universality class i = j (i �= j ). For the
double periodic strip it favors an alignment perpendicular to
the longer axis. This is reminiscent of—and related to—a
well-known corresponding anisotropy [60] of the two-point
averages 〈O(r − s/2)O(r + s/2)〉ST in the strip of the densities
O = φ of the order parameter and O = ε of the energy. For
small mesoscopic distances |s| the anisotropy causes the two-
point averages to be larger for s perpendicular (parallel) to the
two strip boundaries if i = j (i �= j ) and for s perpendicular
to the longer axis of the double periodic strip.

All of these expectations are confirmed and further refined
by the quantitative predictions of the small needle expansion.
It predicts, in particular, that the anisotropy �F due to [63] the
aforementioned effect (ii) depends, apart from the boundary
classes (i,j ) of the strip, only on the length and not [41] on the
universality class (h = +,−, or O) of the small mesoscopic
needle.

In the following text, labeled A, B, and C, we list our main
results.

(A) We have demonstrated that the quantitative predictions
of Sec. II for the rich structure of the orientation-dependent
interaction of nonspherical particles with a “small mesoscopic
size” can actually be observed in a lattice model. This is a
nontrivial result in view of a twofold size condition: the particle
size being small compared with other geometric features and
being large on the scale of the lattice constant. Our Monte
Carlo simulations with needle lengths of about 20 lattice
constants [28] have the potential to closely approach the
asymptotic regime of the “small mesoscopic needle,” leading
to results for �F which agree quite well with the analytic
predictions, without adjusting any parameter. At the same time,
the parameter range in which there is good agreement provides
a (conservative) estimate for the range of validity of the SNA,
which is a truncated form [42] of the systematic expansion for
the universal quasitorque �F in terms of the needle size.

(A1) For a strip with double periodic boundary conditions,
for which the aforementioned effect (i) is absent, our data
for �F reproduce, for the larger needle lengths D = 20, 21,
quite well the predicted dependence of �F on the aspect ratio
W/L of the strip and the predicted independence of �F of
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the universality classes h = O and h = + of the needle, in
leading order (see Fig. 9 and the discussion in Sec. V A).

(A2) In strips with actual boundaries, effects of both type
(i) and (ii) are present and the former ones lead to a dependence
of F‖, F⊥, and �F on the position vN of the needle center
within the strip. Here the analytic predictions hold for strips
of infinite length L = ∞ and Figs. 11, 12, and 14 show the
dependence of the simulation data on the aspect ratio W/L of
the strip.

(A2a) For the five possible and relevant combi-
nations (i[h]j ) = (O[O]O), (+[O]+), (−[O]+), (O[O]+),
and (O[+]O) of universality classes of the two boundaries
of the strip and of the embedded needle, for which the
expansion in Eqs. (2.16)–(2.18) of �F in terms of powers
of D is appropriate, the dependence on vN of our data for �F

is discussed in Sec. V B. In Figs. 10 and 13 this dependence
is compared with the approximate analytic predictions. There
is fair agreement for the case (−[O]+) while in the four other
cases the agreement is very good.

In the case (O[O]+), due to effect (i) one has �F (vN ) > 0
and �F (vN ) < 0 near the O and + boundary, respectively, so
the needle prefers the perpendicular and parallel orientation,
respectively. Since effect (ii) for unequal strip boundaries turns
the needle parallel to the strip, the range of vN values allowing
for parallel orientation is the larger part of the accessible values
of vN , i.e., the point vN where �F changes sign is closer to
the O boundary.

In the strip of infinite length L = ∞ duality arguments
[39,45] predict for the cases (+[O]+) and (O[+]O) the same
expression for �F (vN ) which within the SNA [Eqs. (2.16)–
(2.18)] is visualized as the full line in Fig. 10 and as the
dashed line in Fig. 13. It predicts that in this case the needle
prefers the orientation perpendicular to the strip for small |vN |
where effect (ii) prevails so �F > 0, while for larger |vN |
where effect (i) prevails it prefers the parallel orientation with
�F < 0. The good agreement with the data in Figs. 10 and 13
tells again that within our lattice model one can access the
scaling region and, thus, capture the corresponding universal
small particle behavior.

(A2b) Unlike the combinations considered above
(in A2a) the five combinations (i[h]j ) = (+[+]+),
(−[+]−),(+[+]−),(+[+]O),(−[+]O) discussed in Sec. V C
involve a needle which at Tc is subject to the order-parameter
profile induced by the strip boundaries (i,j ) via its nonva-
nishing amplitude A(h)

φ [see Eqs. (2.10)–(2.14)]. This leads
to a contribution to the partition function ∝D1/8. For the
comparison with the simulation data for �F , in these five
cases the corresponding small needle approximation should
not be implemented by directly expanding �F in terms of
powers of D but by expanding the corresponding partition
functions [see the remarks above Eq. (2.16) and in the first
paragraph of Sec. V C]. The comparison of the analytical
predictions for these cases with the corresponding MC data is
shown in Fig. 15. The orientation preferred by the needle (i.e.,
the sign of �F ) is in conformance with [64] the qualitative
observation (i); also, quantitatively, the MC data agree quite
well with the predictions. According to Fig. 15, in the case
(−[+]−), however, the good agreement for small values of
|vN |/W does not extend beyond |vN |/W ≈ 0.15. In this case,

the expected breakdown of the small needle approximation
near strip boundaries starts already rather close to the strip
center producing an unphysical minimum of �F (vN ) at
|vN |/W ≈ 0.25.

(B) We have investigated the effective interaction between
the needle and the boundaries also for needles of arbitrary
mesoscopic length D, i.e., beyond the regime of the small
needle expansion.

(B1) These exact results have been derived in Sec. III and
Appendix B for the free energy of a needle in the half plane
with an orientation perpendicular to its boundary i and of
a needle embedded along the midline of a strip of infinite
length and with the two boundaries being members of the
same surface universality class (i = j ). These geometries are
related to the W × L strip without a needle (Appendix A 2)
via conformal transformations of the Schwarz-Christoffel type
[65]. For various combinations (h,i) of the surface universality
classes these effective interactions are shown in Figs. 3–5 and
display the crossover between the small needle regime and the
limiting behavior for which the needle approaches and nearly
touches the boundary or becomes much longer than the width
of the strip.

(B2) Apart from the importance in their own right, these
universal results allow us to better understand the limitations
of the small needle approximation. For example, in Fig. 3(a),
for (i[h]) = (−[+]) this approximation reproduces the exact
result for F

(−[+])
⊥ very well down to a distance of the closer end

of the perpendicular needle from the boundary corresponding
to half its length [a< = D/2 = aN/2 so ϑ = D/(2aN ) =
0.5]. For even smaller distances the approximation develops
an unphysical maximum, which is the counterpart of the
minimum produced by the approximation for �F in the
case (−[+]−) (see Fig. 15). In contrast, the exact result
crosses over to a logarithmic increase which diverges when the
needle “touches” the boundary. We recall that the validity of
the small needle approximation requires that the mesoscopic
length D of the needle is small compared with the distance
a< between the closer end of the needle and the boundary,
whereas the exact result is valid if only the microscopic lengths
are sufficiently small compared with a<. Concerning the free
energy F

(−[+]−)
‖ for embedding a + needle extending along

the midline of a (−,−) strip, Fig. 4 explicitly demonstrates
the ensuing improvement if one expands the corresponding
partition function rather than the free energy in terms of the
needle length [see the remarks above Eq. (2.16) and in the first
and second paragraphs of Sec. V C].

(C) Our results allow us to conclude which of the features
studied here are of a more general character and, thus, can
be expected to show up also in spatial dimension d = 3 and
which ones are specific for d = 2.

(C1) In dimensions d > 2, nonspherical mesoscopic parti-
cles such as uniaxial ellipsoids [13,14] or dumbbells of two
touching or interpenetrating spheres of equal size [13] in a
half space and interacting with its planar boundary wall have
been considered for various universality classes (i[h]). For
particle sizes both small [13,66] and comparable [14] with
respect to the distance from the wall, these particles prefer,
at fixed particle center, orientations perpendicular (parallel)
to the boundary of the half space if i = h (i �= h). These

012137-17



O. A. VASILYEV, E. EISENRIEGLER, AND S. DIETRICH PHYSICAL REVIEW E 88, 012137 (2013)

are the same preferences as described in paragraph (i) above
for our small needles in the half plane. In the mean-field
treatment of Ref. [14] it was pointed out that at fixed closest
surface-to-surface distance of particle and wall the preferred
orientations display the opposite trend, i.e., being parallel
(perpendicular) to the boundary of the half space if i = h

(i �= h). These latter preferences are in agreement with our
finding in d = 2 that the free energy F

(i[h])
‖ − F

(i[h])
⊥ , required

to turn a long needle in the half plane about its closer end from
the perpendicular to the parallel orientation, is dominated by
the first term, F

(i[h])
‖ = kBT �i,hD/a< [note the signs of �i,h

given in the text following Eq. (2.9)]. The reason is that the
second term, given by Eq. (3.10), depends only logarithmically
on the large ratio D/a< of the needle length D and the distance
a< of the closer end of the needle from the boundary and, thus,
can be neglected relative to the linear increase exhibited by
F

(i[h])
‖ .

(C2) However, there are also effects which are specific to
two dimensions, due to the symmetries based on the duality
transformation and the much wider class of conformal map-
pings. For example, the aforementioned equality of the particle
insertion free energies as function of vN for the cases (O[+]O)
and (+[O]+) with infinite strip length—based on the duality
symmetry [39,45] of the d = 2 Ising model at the bulk critical
point—has no correspondence for a particle between parallel
walls in d > 2. Likewise, the independence of h of the leading
small particle contribution �Fl to the quasitorque �F in the
case (O[h]O) [see Eq. (2.17)] is valid in d = 2 but not in
d > 2. The derivation of this result in d = 2 hinges on using
a conformal transformation as described in Ref. [41] which is
not available for a nonspherical particle in d > 2.

(C3) There is an interesting difference between “ordinary”
needles in d = 2 and d = 3 which arises from the dependence
on their width W . Here we have considered needles with a
mesoscopic width W which is much smaller than the needle
length D. For both “ordinary” and “normal” needles in d = 2
the effects they induce in the embedding critical system (such
as the density profiles), and, thus, their effective interactions
with the boundaries leading to force and torque, depend only
on their length D but not [67] on their width W . This applies
also [68] to a “normal” needle in d = 3. However, for an
“ordinary” needle in d = 3 with fixed length D the strength of
these effects decreases [69] upon decreasing the width W . For
example, within the small needle expansion the prefactor of the
energy density O = ε is proportional to DWxε−1 = DW0.42

in d = 3 while in d = 2 it is proportional to Dxε = D and
independent of W (see Eq. (2.2) and Ref. [24]).

Extending our detailed investigations to nonspherical par-
ticles in three spatial dimensions and for the whole neighbor-
hood [70] of the critical point is desirable but beyond the scope
of the present study. For Monte Carlo simulations in d = 3,
studies of (square shaped) disks and of “normal” needles
with their properties being independent of their width look
most promising [67]. Corresponding quantitative analytical
predictions remain a challenge. The small particle expansion
can, in principle, be extended to, e.g., a circular disk. However,
the amplitudes and averages of the corresponding operators
can be obtained only approximately. A mean-field treatment
corresponding to d = 4 is given in Ref. [13] but one-loop

field theoretic calculations, corresponding to the first-order
contribution in an expansion in terms of 4 − d, already look
quite demanding.
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APPENDIX A: STRIP WITHOUT NEEDLE

1. Double periodic boundary conditions

The behavior near bulk criticality of finite Ising strips with
periodic boundary conditions in both Cartesian directions has
found a long-lasting theoretical interest, starting, to the best
of our knowledge, in 1969 with the seminal paper [47] by
Ferdinand and Fisher. Therein the aspect ratio dependence of
the free energy is given explicitly and was rederived by other
methods in later studies. The quantity −�

(P )
ST addressed in the

text following Eqs. (2.18) and (5.1) is given by the scale free
part of ln Znm in Eq. (3.37) of Ref. [47]. It is equal to ln ZI

in Ref. [48] and to ln ZPP for the Ising model in Ref. [44].
Adopting Cardy’s notation (see Eqs. (2.4)–(2.6) and Table 1
in Ref. [44]), the relation for the Casimir (or stress tensor)
amplitude �P given in the text following Eq. (2.18) yields the
result

�P (W/L) ≡ �P (1/δ) = −π/12 − (d/dδ) ln{[χ11(δ)]2

+ [χ21(δ)]2 + [χ22(δ)]2}, (A1)

where, for the Ising model, one has the conformal charge c =
1/2 and the parameter m = 3 in the functions χpq introduced
by Cardy.

The energy density 〈ε〉ST = f (P )
ε (W/L)/W defined in the

text following Eqs. (2.3) and (5.1) is, of course, independent
of u and v and turns out to vanish [47,72] for strips of infinite
length L, i.e., f (P )

ε (0) = 0. The aspect ratio dependence has
been determined in Refs. [47] and [48] and in our notation
reads

f (P )
ε (W/L) ≡ f (P )

ε (1/δ) = −πE(δ)/Z(δ), (A2)

where

E(δ) = [
U 1/24�∞

n=1(1 − Un)
]2

(A3)

with U = exp(−2πδ) and

Z(δ) = (1/2){2E(2δ)/E(δ) + [E(δ)]2/[E(2δ)E(δ/2)]

+E(δ/2)/E(δ)}. (A4)

Our quantities f (P )
ε , δ, E, and Z correspond to the quantities

−〈ε〉I , −iτ , |η2|, and ZI , respectively, in Ref. [48] [see the
introductory remarks in Sec. III and Eqs. (3.3), (3.4), and (3.14)
therein].

2. Strip with boundaries (i, j)

For our strip (ST) with the aspect ratio 1/δ = W/L and
boundaries

(i,j ) = [(O,O),(+,+),(+,−),(+,O)], (A5)
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Cardy’s results [44] for the partition functions and our
Eqs. (2.8) and (2.9) yield

�i,j (1/δ) = −π/48 − (d/dδ) ln[χ11(δ/2)

+χ21(δ/2),χ11(δ/2), χ21(δ/2), χ22(δ/2)] (A6)

for the universal stress tensor amplitudes in terms of the
functions χpq introduced in Ref. [44]. For later reference we
rewrite Cardy’s expressions in the form

�i,j (1/δ) = (π/48)
(−1 + 12κ(d/dκ)

× ln
{
[�11 + �21,�11, �21, �22]

×�∞
n=1(1 − κ4n)−1

})
(A7)

and alternatively as

�i,j (1/δ) = (πδ−2/12)

(
1 − 24σ (d/dσ )

× ln

{
(1 + [(S11 + S21)/2,S11,S21,S22])

×
∞∏

n=1

(1 − σ 2n)−1

})
, (A8)

which converge rapidly for long strips with large δ (corre-
sponding to extended, closely spaced boundaries) and for short
strips with small δ (i.e., short, widely separated boundaries),
respectively. In Eqs. (A7) and (A8) one has

κ = e−πδ/4,

�pq ≡ �pq(κ) =
∞∑

l=−∞

[
κ [(24l+4p−3q)2−1]/12 − (q → −q)

]
(A9)

and

σ = e−2π/δ,

Spq ≡ Spq(σ ) =
∞∑

r=2

σ (r2−1)/24

× sin
πpr

3
sin

πqr

4

/(
sin

πp

3
sin

πq

4

)
, (A10)

respectively. The three functions �pq(κ) in Eq. (A7) can be
written as

�pq(κ) = κ [(4p−3q)2−1]/12

(
1 +

∞∑
n=1

anκ
4n

)
, (A11)

where the coefficients an take the integer values 0, ±1 as
determined by (A9). For small σ the three functions Spq(σ )
have the following explicit forms:

S11 = 21/2σ 1/8 + σ − σ 2 − 21/2σ 4+1/8 − σ 5 + · · ·
S21 = −21/2σ 1/8 + σ − σ 2 + 21/2σ 4+1/8 − σ 5 + · · ·
S22 = −σ − σ 2 + σ 5 + · · · . (A12)

For closely spaced boundaries with i �= j the derivative
with respect to κ in Eq. (A7) contributes due to the prefactor in
Eq. (A11) even in leading order W/L � 1 so �i,j (0) depends

on (i,j ) as given in the text following Eq. (2.9). For widely
spaced boundaries (i,j ) the derivative with respect to σ in
Eq. (A8) does not contribute to the leading behavior and

�i,j (1/δ) → πδ−2/12 = −�P (0)/δ2, 1/δ → ∞, (A13)

is independent of (i,j ). In this case of W/L � 1 the stress
tensor averages of the strip ST are dominated by the peri-
odic boundary condition in u direction and determined by
〈T‖ ‖〉ST ≡ 〈Tu u〉ST → �P (0)/L2 with �P (0) given in the text
following Eq. (2.18).

The above expressions in Eqs. (A5)–(A12) do not only
serve to provide the aspect ratio dependence of the leading
contribution �Fl in Eq. (2.17) of the free energy required to
rotate the small needle in the strip but also to calculate the
effective interactions for certain particles of arbitrary size: in
the first entry of Ref. [23] for two particles of circular shape
as well as in Appendix B 2 for certain configurations of two
needles in the unbounded plane, of one needle in the half plane,
and of one needle in a strip.

Now we present the explicit forms of the scaling functions
f

(i,j )
O (vN/W,0) of the density profiles in Eq. (2.7) in a strip

of infinite length L = ∞. These can be inferred from, e.g.,
Ref. [50]. In our notation they are given by

f
(O,O)
φ = 0, f (O,O)

ε = C/2

f
(+,+)
φ = (2C)1/8, f (+,+)

ε = −C/2
(A14)

f
(+,−)
φ = −(2C)1/8s, f (+,−)

ε = (C/2)[3 − 4s2]

f
(+,O)
φ = (C/2)1/8[1 − s]1/4, f (+,O)

ε = (C/2)s,

where

C ≡ π/ cos(πvN/W ), s ≡ sin(πvN/W ). (A15)

One can easily check that near the boundaries the corre-
sponding profiles 〈O(rN )〉 reduce to the half-plane limits
〈O(rN )〉half plane with the amplitudes provided in Eq. (2.5). In
particular, in the strip with i = + the three profiles f

(+,j )
φ given

in Eq. (A14) exhibit the behavior f
(+,j )
φ (vN/W → −1/2) →

21/8[(vN/W ) + (1/2)]−1/8 = (2W/aN )1/8 corresponding to
the half plane with boundary +.

APPENDIX B: NEEDLES OF ARBITRARY LENGTH

1. Symmetry-preserving cases

a. Needle and boundaries belonging to O. Here we establish
Eqs. (3.2) and (3.13) for the free energy associated with the
insertion of a needle in the case that both the needle and the
boundaries are of the symmetry-preserving “ordinary” type.
We start with Burkhardt’s result [71] for the thermal average
of the stress tensor induced by n nonoverlapping “ordinary”
needles embedded in the x axis of the unbounded (x,y) plane.
If the n needles extend from x1< to x1>, from x2< to x2>,. . .,
and from xn< to xn>, respectively, with arbitrary real num-
bers x1< � x1> � x2< � x2> � · · · � xn< � xn>, the stress
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tensor averages 〈Tkl(x,y)〉 at a point (x,y) follow from the
analytic function

〈T (z)〉([O][O]···[O])

= 2−6

(
1

z − x1<

− 1

z − x1>

+ 1

z − x2<

− 1

z − x2>

+ · · · + 1

z − xn<

− 1

z − xn>

)2

(B1)

of the complex variable z = x + iy via [73] the relations
〈Txx(x,y)〉 = −〈Tyy(x,y)〉 = −Re〈T (z)〉/π and 〈Txy(x,y)〉 =
〈Tyx(x,y)〉 = Im〈T (z)〉/π , where Re and Im denote real and
imaginary parts, respectively. We point out the consistency
of Eq. (B1) in the special cases xm< → xm>, in which the
needle m disappears, and for xm> → xm+1<, in which two
consecutive needles m and m + 1 merge into a single one.
For n = 1 this reproduces the expression 〈T (z)〉([h]), which is
independent [41] of h and follows from mapping the half plane
onto the entire plane outside a single needle (cf. Eqs. (A8) and
(A9) in Ref. [24]).

In order to derive Eq. (3.2) we use Eq. (B1) for n = 2,
put (x1<,x1>) = (−∞,0), so the first needle fills the negative
x axis, and denote (x2<,x2>) by (x<,x>). The conformal
transformation z = c2/l with c = a + ib maps the (x,y)
plane with the two “ordinary” needles onto the half plane
(a > 0,b) with the “ordinary” boundary line a = 0 and a single
embedded “ordinary” needle extending from (a = √

lx< ≡
a<,b = 0) to (a = √

lx> ≡ a>,b = 0). This leads to a stress
tensor function,

〈T (c)〉 = −A/8 + c2A2/16, (B2)

where

A = 1

c2 − a2
<

− 1

c2 − a2
>

. (B3)

In order to obtain this result, one uses the transformation
formula for the stress tensor which includes the Schwarzian
derivative [73]. The arbitrary length l, introduced for dimen-
sional reasons, does not appear in the relation between 〈T (c)〉
and a<,a>. Shifting the needle away from the boundary line,
i.e., increasing the distance aN = (a> + a<)/2 of its midpoint
from the boundary while keeping its length a> − a< and
orientation fixed, leads to a change in the free energy F⊥
determined by [23,38]

∂

∂aN

F⊥
kBT

= −
∫ ∞

−∞
db 〈T⊥⊥(a,b)〉, (B4)

where 〈T⊥⊥(a,b)〉 = −Re〈T (c)〉/π is the diagonal stress
tensor component perpendicular to the boundary line a = 0.
The integration path must extend between the boundary and
the needle, i.e., 0 � a < a< in Eq. (B4). In this region the
integral over b is independent of a and is carried out most
easily for a = 0. Integrating the result with respect to aN and
denoting the needle length a> − a< by D leads to the result in
Eq. (3.2) for F⊥ ≡ F

(O[O])
⊥ .

In order to establish Eq. (3.13) one uses the transformation
c/l = exp(πw/W ), w = u + iv, in order to map the half plane
(a > 0,b) with its embedded needle onto a needle in strip

geometry as described in the context of Eq. (3.13). With the
ends of the needle at u = ±D/2, this way one finds the stress
tensor function

〈T (w)〉 = (π/W )2(−1/48 − B/8 + B2/16), (B5)

where

B = sinh θ

cosh θ − cosh(2πw/W )
, (B6)

with θ defined in Eq. (3.11). The free-energy change
(d/dW )F (O[O]O)

‖ /(kBT ) upon widening the strip follows from
the right-hand side of Eq. (B4) by replacing (a,b) with (u,v)
and identifying 〈T⊥⊥(u,v)〉 with Re〈T (w)〉/π . Here and in the
text following Eq. (B4) the real parts of 〈T (w)〉 and 〈T (c)〉
enter with a plus and minus sign, respectively, because in
the complex w and c planes the directions ⊥ perpendicular
to the boundaries point along the imaginary and the real
axis, respectively. Performing the integral and integrating with
respect to W leads to the result for F

(O[O]O)
‖ given in Eq. (3.13).

b. Needle in a strip with periodic boundary condition. Now
we consider the geometry corresponding to Eq. (3.16). For
the infinitely long strip with periodic boundary condition
containing a needle in parallel direction the stress tensor
function 〈T (w)〉 follows from Eq. (B1) with n = 1 and the
transformation z/l = exp(2πw/W ), yielding

〈T (w)〉 = (π/W )2(−1/12 + B2/16), (B7)

with B given in Eq. (B6). Proceeding as for the (O,O) strip
above, Eq. (B7) leads to the result for F‖ given in Eq. (3.16).

c. Ordinary needle and + boundaries. Finally, we derive
Eqs. (3.3) and (3.14) from the expression [71]

〈T (z)〉([E][O]) = 2−6

(
1

z − x1<

− 1

z − x1>

− 1

z − x2<

+ 1

z − x2>

)2

(B8)

for the stress tensor function induced by an “extraordinary”
needle E extending from x1< to x1> and an “ordinary” needle
from x2< to x2>. An “extraordinary” needle preserves the
(+ ↔ −) symmetry and can be realized in a lattice model
as a line of spins with infinitely strong nearest-neighbor
ferromagnetic couplings between them so they all point either
in the + or all in the − direction [39,45]. The partition
function Z([E][O]) ≡ Z([+][O]) + Z([−][O]) in the presence of
the two needles E and O differs by only a factor of 2 from
the two identical partition functions Z([+][O]) = Z([−][O]) in
the presence of two needles + and O or − and O. (This
argument holds if the partition functions are finite. This can
be achieved by enclosing the whole system in a large box with
“ordinary” boundaries.) Thus, the corresponding free energies
differ by an additive constant −kBT ln 2 which drops out from
the free-energy difference upon changing the needle geometry
as well as from the stress tensor so

〈T (z)〉([E][O]) = 〈T (z)〉([+][O]) = 〈T (z)〉([−][O]). (B9)

Note the different sign sequences in 〈T (z)〉([E][O]) on the right-
hand side of Eq. (B8) and in 〈T (z)〉([O][O]) on the right-hand
side of Eq. (B1) with n = 2. This implies that for obtaining
the (+[O]) case Eqs. (B2) and (3.2) have to be modified by
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replacing A → −A and ϑ → −ϑ , respectively, which leads to
Eq. (3.3). Similarly, for the (+[O]+) case Eqs. (B5) and (3.13)
have to be modified by replacing B → −B and θ → −θ ,
respectively, in order to obtain Eq. (3.14).

2. Cases with genuinely broken symmetry

In this subsection we derive the general expressions in
Eqs. (3.4) and (3.15) for the Casimir forces which encom-
pass also the cases (+[+]), (−[+]) and (+[+]+), (−[+]−)
which cannot be reduced to cases with symmetry-preserving
boundaries. We start by considering two needles 1 and 2 on
the x axis, as in Appendix B 1, but with arbitrary universality
classes [i] and [j ], respectively. The corresponding stress
tensor 〈T (z)〉([i][j ]) can be inferred from the difference

〈T (z)〉([i][j ]) − 〈T (z)〉([O][O])

= 1

(z − x1<)(z − x1>)(z − x2<)(z − x2>)

× (x1> − x1<)(x2> − x2<)

(1 − k)2
τi,j (k), (B10)

where

τi,j (k) = 1

48
(−1 + 6k − k2) − π�i,j (1/δ)

(2K(k))2 (B11)

and 〈T (z)〉([O][O]) is the stress tensor for two “ordinary” needles
given by Eq. (B1) with n = 2. The quantity 0 � k � 1 is
related to cross ratios of the four needle end points via one
of the two following equivalent relations:

(x1> − x1<)(x2> − x2<)

(x2< − x1>)(x2> − x1<)
= (1 − k)2

4k
(B12)

and

(x2< − x1<)(x2> − x1>)

(x2< − x1>)(x2> − x1<)
= (1 + k)2

4k
. (B13)

The amplitude functions �i,j (1/δ) are given by Eqs. (A6)–
(A10) with the argument 1/δ related to k via

1/δ = K(k)/K∗(k) (B14)

with the complete elliptic integral [53] functions K(k) and
K∗(k) = K(

√
1 − k2) [see Eq. (3.8)].

Note that the pole of second order at z equal to a needle end,
present with equal residues 2−6 in the stress tensor averages in
Eqs. (B1) and (B8), is absent in the difference of averages in
Eq. (B10). This implies that, e.g., near the needle end at x1<

the leading contribution to the corresponding average of the
stress tensor elements Tkl [see the text following Eq. (B1)] is
independent not only [41] of the length and universality class
of needle 1 but also of the presence (i.e., distance, length, and
universality class) of another needle, needle 2. Moreover, as
shown by Eqs. (B2), (B5), and (B7) as well as by Eqs. (B17)
and (B28), this contribution is also independent of the presence
of the concomitant boundaries of the half space and the strip.

Equations (B10)–(B14) follow from the Schwarz-
Christoffel transformation [65,74] which conformally maps
the z = x + iy plane with the two needles [i] and [j ]
embedded in the x axis onto the rectangle or strip ST with
boundaries (i,j ) at v = ±W/2, periodic boundary condition
in u direction, and Casimir amplitudes �i,j , as introduced in

the paragraph containing Eqs. (2.8) and (2.9). The Schwarzian
derivative in the corresponding transformation law of stress
tensors [38,73] drops out from the stress tensor difference
given by Eq. (B10).

The vanishing of τi,j in Eq. (B11) for (i,j ) = (O,O)
provides, together with Eq. (B14), another expression for
�O,O(1/δ) besides (but equivalent to) the ones in Eqs. (A6)–
(A8). For �+,O(1/δ) the corresponding other expression
follows from Eqs. (B10) and (B11) with (i,j ) = (+,O) when
combined with Eqs. (B1), (B8), and (B9).

The difference of the stress tensors in Eq. (B10) must vanish
in the limit of distant needles with no correlation between them
because the stress tensor for a single needle in unbounded
space is independent of its universality class [41]. For the
same reason it must also vanish if two needles of the same
universality class i = j = + (or −) come close so they merge,
i.e., x1> = x2<, and form a single + (or −) needle. These
expectations are in agreement with the behaviors

lim
k→1

τi,j (k) = 0 (B15)

and

lim
k→0

τi,j (k) = [�i,i(0) − �i,j (0)]/π (B16)

of τi,j for distant and close needles with δ ↘ 0, k ↗ 1 and
δ ↗ ∞, k ↘ 0, respectively. Equation (B15) follows from
Eqs. (A13) and (B14).

Proceeding as described above Eq. (B2), the difference of
the stress tensors for the needle in the half plane is obtained as

〈T (c)〉(i[j ]) − 〈T (c)〉(O[O]) = − 4A

(1 − k)2
τi,j (k) (B17)

with 〈T (c)〉(O[O]) ≡ 〈T (c)〉 from Eq. (B2) and the function A

from Eq. (B3). Via

a</a> = 2k1/2/(1 + k), k = (1 − ϑ1/2)2/(1 + ϑ1/2)2,

(B18)

k is related to the needle parameters a</a> and ϑ = (a> −
a<)/(a> + a<) introduced above Eq. (B2) and in Eq. (2.21).
Using the relation between k and ϑ in Eq. (B18) together with
the suitable functional relations

K(k) = (1 + ϑ1/2)2 K∗(ϑ)/4,
(B19)

K∗(k) = (1 + ϑ1/2)2 K(ϑ),

between elliptic integrals (see Eqs. 8.126.1 and 8.126.3 in
Ref. [53]) yields together with Eq. (B11) the more convenient
expression

4

(1 − k)2
τi,j (k) = 1

4ϑ
τ̃i,j (ϑ) (B20)

for the amplitude in Eq. (B17), where τ̃i,j is taken from
Eqs. (3.5)–(3.7). Equation (B4) finally yields the expression

− ∂

∂aN

F
(i[j ])
⊥ − F

(O[O])
⊥

kBT
= − 1

4ϑ
τ̃i,j (ϑ)

(
1

a<

− 1

a>

)
(B21)

for the difference of the Casimir forces acting on the needle
in the cases (i,j ) and (O,O), which implies Eq. (3.4) upon
renaming the dummy index j as h.
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For the special combinations (+,O), (O,+), (−,O), and
(O,−) the expression in Eq. (B20) becomes independent
of k and ϑ and equals −1/4. This follows from comparing
Eq. (B10) with the simple expressions in Eqs. (B1) and (B8)
and by using Eq. (B9). For combinations (i,j ), with both i

and j being “normal” universality classes, the expression in
Eq. (B20) displays a nontrivial dependence on k and ϑ .

In Eq. (3.6) the dependence on ϑ of τ̃i,h and ρi,h, with (i,h)
being arbitrary, can be readily calculated for a needle nearly
touching the boundary (ϑ̄ = √

1 − ϑ2 ↘ 0, δ ↗ ∞) as well
as for a distant or small needle (ϑ ↘ 0, δ ↘ 0) by combining
the first and second expression in Eq. (3.6) with Eqs. (A7)
and (A11) and with Eqs. (A8), (A12), and (A13), respectively.
In obtaining these limiting behaviors one uses the fact that
Eqs. (A9) and (A10) and Eqs. (3.7) and (3.8) imply the simple
dependencies

κ = [(ϑ̄/4)P (ϑ̄2)]2, σ = (ϑ/4)P (ϑ2) (B22)

of κ and σ in Eqs. (A7) and (A8) on ϑ̄ and ϑ , where P (x2)
can be expressed in terms of a power series in x2 given by

P (x2) = exp{−Q(x2)/R(x2)} = 1 + x2/4 + O(x4),

(B23)

with

R(x2) = (2/π )K(x) = 1 + x2/4 + O(x4) (B24)

and (see Ref. [53])

Q(x2) = K(
√

1 − x2) − R(x2) ln(4/x)

= −2

{(
1

2

)2 1

1 × 2
x2

+
(

1 × 3

2 × 4

)2[ 1

1 × 2
+ 1

3 × 4

]
x4 + · · ·

}
. (B25)

We use these relations to show that for small ϑ the exact
expressions in Eq. (3.4) for the Casimir forces are consistent
with the small needle expansion. To this end, we, first, note
that expanding the expressions in Eq. (3.4) yields

−aN

∂

∂aN

F
(i[h])
⊥
kBT

= −ϑ
d

dϑ
ln{} + O(ϑ4) (B26)

with the curly bracket being identical to the curly bracket in
the expression for �i,h in Eq. (A8). This follows from inserting
Eqs. (3.6) and (A8) into the second expression in Eq. (3.4) and
by using Eq. (B24) for K(ϑ) as well as the relation σ d/dσ =
[1 − ϑ2/2 + O(ϑ4)]ϑ d/dϑ due to Eq. (B22). Furthermore,
apart from terms of order ϑ4 the curly bracket in Eq. (B26)
is equal to 1 + ζI + ζA with the expressions ζI and ζA from
Eq. (2.19) for a small needle in a half plane. For example, in
the case (i[h]) = (−[+]), with the small needle approximation
[42]

−aN

∂

∂aN

F
(−[+])
⊥
kBT

= −ϑ
d

dϑ
ln(1 + ζI + ζA)

= −ϑ
d

dϑ
ln[1 − 21/4ϑ1/8 + ϑ/4

− 21/4(3/32)ϑ2+1/8 + (5/43)ϑ3], (B27)

the aforementioned relation between the curly bracket and 1 +
ζI + ζA follows from the second part of Eq. (A12) and from
Eqs. (B22) and (B23). Accordingly, the difference between the
exact expression for the critical Casimir forces in Eq. (3.4) and
their small needle approximations is of the order ϑ4.

Proceeding as in the paragraph containing Eqs. (B5)
and (B6), for the geometry of a needle of class j extending
along the midline of an (i,i) strip, as discussed in paragraph
(ii) in Sec. III, one obtains

〈T (w)〉(i[j ]i) − 〈T (w)〉(O[O]O) = −B × (π/W )2 τ̃i,j (t)/(4t)

(B28)

with the function B given by Eq. (B6), 〈T (w)〉(O[O]O) ≡
〈T (w)〉 from Eq. (B5), τ̃i,j as in Eq. (3.5), and t related to
θ ≡ πD/W as stated in Eq. (3.15). The force in Eq. (3.15)
follows from the stress tensor difference in Eq. (B28) upon
replacing [j ] with [h] and by using a so-called shift equation
as in Eq. (B4).

Similarly as in the paragraph containing Eq. (B26), the
expanded expression

−W
∂

∂W

F
(i[h]i)
‖
kBT

= −2êθ2 − θ
d

dθ
ln{1 + âθ1/8 + b̂θ

+ ĉθ2+1/8 + d̂θ3} + O(θ4), (B29)

ê = −(1/3)2−7,

of the exact result in Eq. (3.15) with coefficients â − ê follows
from Eqs. (3.6), (A8), (A12), (B22), and (B23) and is related
to the small needle approximation [42]

−W
∂

∂W

F
(i[h]i)
‖
kBT

= −θ
d

dθ
ln(1 + ζI − ζA)

= −θ
d

dθ
ln(1 + âθ1/8 + b̂θ + êθ2

+ f̂ θ2+1/8 + ĝθ3) (B30)

where ζI and ζA are given by Eqs. (2.13) and (2.14) with
needle center vN = 0 at the midline of the (i,i) strip. Note
that the term êθ2 with ê given in Eq. (B29) equals the
contribution (π/2)(D/2W )2�i,i with the critical Casimir
amplitudes �i,i = −π/48 for (i,i) strips which enter into
ζA in Eq. (2.14) and Eq. (B30). Unlike ê, the other co-
efficients â, b̂, ĉ, d̂, f̂ , and ĝ depend on the boundary and
needle universality classes (i,h). The deviation of the exact
expression −W (d/dW )F (i[h]i)

‖ /(kBT ) from its small needle
approximation is given by the difference of Eq. (B29) and
Eq. (B30) and is of the order θ4 because

âê + ĉ − f̂ = b̂ê + d̂ − ĝ = 0. (B31)

For example, in the case (i[h]i) = (−[+]−), in which the
expression for the argument of the logarithm in Eq. (B30)
equals Z‖ as given by Eq. (5.4), one has

â = −21/8, b̂ = 1/8, ĉ = −(5/3)2−7+1/8,

d̂ = −(1/3)2−9, f̂ = −(1/3)2−5+1/8, ĝ = −2−10,

(B32)

which satisfy Eq. (B31).
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For the convenience of the reader we provide the explicit
expressions

(f ⊥
O[O](ϑ))SNA = − ln{1 + (ϑ/4)[1 + (5/16)ϑ2]},

(f ⊥
+[+](ϑ))SNA = − ln{1 + 21/4ϑ1/8[1 + (3/32)ϑ2]

+ (ϑ/4)[1 + (5/16)ϑ2]}, (B33)

(f ⊥
−[+](ϑ))SNA = − ln{1 − 21/4ϑ1/8[1 + (3/32)ϑ2]

+ (ϑ/4)[1 + (5/16)ϑ2]}
and

(f ‖
O[O]O(θ ))SNA = − ln{1 − (1/3)2−7θ2 + (θ/8)[1 − 2−7θ2]},

(f ‖
+[+]+(θ ))SNA = − ln{1 − (1/3)2−7θ2 + (2θ )1/8

× [1 + (1/3)2−5θ2] + (θ/8)[1 − 2−7θ2]},
(f ‖

−[+]−(θ ))SNA = − ln{1 − (1/3)2−7θ2 − (2θ )1/8

× [1 + (1/3)2−5θ2] + (θ/8)[1 − 2−7θ2]}
(B34)

for the [42] small needle approximations (f ⊥
i[h])SNA and

(f ‖
i[h]i)SNA of f ⊥

i[h] ≡ F
(i[h])
⊥ /(kBT ) and f

‖
i[h]i ≡ F

(i[h]i)
‖ /(kBT ).

For the cases (+[O]) and (+[O]+) the expressions follow
from those for (O[O]) and (O[O]O) by the replacements
ϑ → −ϑ and θ → −θ , respectively.

APPENDIX C: SUMMARY AND DISCUSSION
OF KEY QUANTITIES

In order to ease the reading of the text, here we compile the
symbols and notations used and explain their meanings.

A: Expression given by Eq. (B3) which serves to display
the dependence on c of the analytic functions 〈T (c)〉(i[h])

[see Eqs. (B2) and (B17) as well as the text following
Eq. (B9)] and, thus, to display the position dependence of
the stress tensor averages for the geometries of a needle of
boundary universality class h in the half plane with orienta-
tion perpendicular to the boundary of boundary universality
class i.

A(h)
O : Universal amplitudes of the profiles 〈O(r)〉half plane

in the half plane with boundary universality class h, where
O = φ and O = ε are the normalized operators [see Eq. (2.4)]
of the order-parameter density and of the deviation of
the energy density from its bulk value, respectively [see
Eq. (2.5)].

a and b: Half-plane coordinates perpendicular and parallel
to the boundary a = 0 [see the text preceding Eqs. (2.5)
and (B2)].

aN : Distance of the needle center from the boundary of
the half plane (or from the lower boundary of the strip) (see
Fig. 2).

a< and a>: Distance of the closer and farther needle
end from the boundary for a needle in the half plane with
perpendicular orientation [see Fig. 2(b) and the text above
Eqs. (3.1) and (B2)]; a> = a< + D.

B: Expression given by Eq. (B6) which serves to display
the dependence on w of the analytic functions 〈T (w)〉(i[h]i) [see
Eqs. (B5) and (B28) as well as the text following Eq. (B9)] and,
thus, to display the position dependence of the stress tensor

averages for the geometries of a needle of class h embedded
in the midline of a strip with (i,i) boundaries.

c = a + ib: Complex variable specifying the position
vector (a,b) in the half plane [see the text preceding Eq. (B2)].

ci,j ≡ [�Fnl/(kBT )]/(D/W )2: Normalized next-to-
leading contribution to the quasitorque acting on a small
“ordinary” needle O in an (i,j ) strip (see the paragraph
following Eqs. (5.2) and (5.3) and the caption to Fig. 10).

D: The number of missing bonds (fixed spins) in the lattice
description of the “ordinary” (“normal”) needle in Secs. I
and IV (see Fig. 1 as well as Figs. 6 and 7) or [28] the length
of the needle in the continuum descriptions used in Secs. I–III,
and Appendix B (see Fig. 2).

E: “Extraordinary” boundary with infinitely strong ferro-
magnetic nearest-neighbor couplings between surface spins
(see Ref. [39]).

F‖ and F⊥: Free-energy cost to transfer the needle from the
bulk into the strip (or into the half plane) with its orientation
parallel and perpendicular to the boundaries, respectively [see
Eqs. (2.10)–(2.14) and the text preceding Eq. (3.11) or follow-
ing Eq. (3.1)]. In particular, F‖ ≡ F

(i[h]i)
‖ = kBTf

‖
i[h]i(θ ) and

F⊥ ≡ F
(i[h])
⊥ = kBTf ⊥

i[h](ϑ) for needles h of arbitrary length
embedded in the midline of an (i,i) strip and perpendicular to
the boundary i of the half plane, respectively.

�F ≡ F‖ − F⊥ ≡ F1 − F0: Free energy required to turn
the needle about its center from the perpendicular to the
parallel orientation [see Eq. (2.15)].

�Fl and �Fnl : Leading and next-to-leading contributions,
respectively, to �F for the cases (i[O]j ) and (O[+/−]O)
of a small needle [see Eqs. (2.16)–(2.18) as well as the
corresponding half-plane relations in Eq. (2.20)].

F
(i,j )
ST : Free energy of the strip ST without needle and with

boundaries (i,j ) (see Ref. [43]).
Fcr(λ): The free energy belonging to the lattice crossover

Hamiltonian [see the paragraph containing Eqs. (4.4)–(4.6)].
f

‖
i[h]i(θ ) ≡ F

(i[h]i)
‖ /(kBT ): See Eq. (3.12) as well as Figs. 4

and 5.
f ⊥

i[h](ϑ) ≡ F
(i[h])
⊥ /(kBT ): See Fig. 3 and the text following

Eq. (3.1).
fb and fs: Bulk free energy per area and surface free energy

per length (see Ref. [43]).
f

(i,j )
O : Universal scaling functions of the profiles 〈O(r)〉ST

for O = φ, ε in the needle-free strip ST with boundaries (i,j )
[see Eqs. (2.7) and (A14)].

f (P )
ε : Position-independent universal scaling function of

〈ε〉ST in the needle-free strip ST with double periodic
boundary conditions [see the text following Eq. (2.18) and
Appendix A 1].

g⊥
i[h](ϑ) and g

‖
i[h]i(θ ): Scaling functions for the effective

force acting on a needle h perpendicular to the boundary i

of the half plane and for the disjoining force induced in an
(i,i) strip by a needle h embedded in its midline [see the text
following Eq. (3.1) or above Eq. (3.11)].

HST: Lattice Hamiltonian for strips without a needle [see
Eq. (4.1)].

HST + H(h)
⊥ ≡ H0 andHST + H(h)

‖ ≡ H1: Lattice Hamilto-
nians for strips containing an embedded needle with orienta-
tion perpendicular and parallel to the boundaries, respectively
[see Eqs. (4.2) and (4.3)].
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�H ≡ H1 − H0 ≡ H(h)
‖ − H(h)

⊥ : Difference of lattice
Hamiltonians for parallel and perpendicular orientation of the
needle h with a fixed center [see Eqs. (4.4)–(4.7)].

H(O)
cr (λ) and H(+)

cr (λ): Crossover Hamiltonian for the nee-
dle of broken bonds and of fixed spins, respectively [see
Eqs. (4.10) and (4.19) as well as Figs. 6(c) and 8(c)].

H̃(O) and H̃(+): Lattice Hamiltonian for a strip containing a
cross-shaped hole with the two bars corresponding to the two
orientations of the needle of broken bonds and of fixed spins,
respectively [see the text following Eqs. (4.10) and (4.19)].

h: Characterizes the universality class of the needle surface.
(i,j ): Characterizes the surface universality classes of the

(lower, upper) boundary of the strip.
(i[h]): Needle of class h in the half plane with boundary of

class i.
(i[h]j ): Needle of class h in the strip with boundaries of

classes i and j .
J > 0: Ferromagnetic coupling strength between nearest-

neighbor Ising spins on the square lattice implying the
bulk critical temperature Tc = [2/ ln(

√
2 + 1)](J /kB) [see

Eq. (4.1) and the paragraph above Eq. (4.2)].
Ju,v;u′,v′J : Coupling between nearest neighbors (u,v) and

(u′,v′) in a strip containing a needle of broken bonds [see
Figs. 6(a) and 6(b)]. J equals 0 and 1 for broken and unbroken
bonds, respectively.

k: Parameter characterizing the configuration of two nee-
dles embedded in the x axis of the unbounded (x,y) plane via
the cross ratio of their end points [see Eqs. (B12) and (B13)].

L: The number of columns in the lattice model for the strips
considered in Secs. I and IV (see Figs. 1 and 6–8) or [28]
the length of the strip in the continuum descriptions used in
Secs. I–III, and Appendix A (see Fig. 2).

l: Arbitrary length in the conformal transformations given in
the text above Eqs. (B2), (B5), and (B7) which relate different
geometries. It is introduced for dimensional reasons only and,
due to dilatation invariance, drops out from equations relating
quantities which belong to the same geometry.

n: Unit vector describing the orientation of the needle [see
Eq. (2.3)]. In the strip, n = (n‖,n⊥) [see Eq. (2.6)]

O: The “ordinary” surface universality class. Correspond-
ing boundaries or needles induce disorder in the system of
Ising spins, i.e., in their vicinity the probability to find parallel
nearest-neighbor spins is smaller than in the bulk.

+ and −: The two “normal” surface universality classes
with the tendency to order the Ising spins in the + and −
directions, respectively.

rN : Position vector of the center of the needle [see Eqs. (2.2)
and (2.3)]. In the strip, rN = (uN,vN ) [see Eq. (2.6)].

SI and SA: Operator contribution to the normalized Boltz-
mann weight of the small needle which is isotropic and
anisotropic, respectively, with respect to the orientation of the
needle [see Eqs. (2.1)–(2.3)].

ST: Denotes the strip in the absence of the needle.
SNA (small needle approximation): Truncated form of the

small needle expansion [see Ref. [42], the paragraph contain-
ing Eqs. (2.16)–(2.18) and the first paragraph of Sec. V C]. For
explicit expressions see Eqs. (5.4), (B33), and (B34).

s0: Exterior spin fixed to the value +1 [see the first
paragraph in Sec. IV B3 as well as Fig. 8(c)].

Tkl : Stress-tensor operator [see Eq. (2.3)] with its elements
in the strip denoted by T‖ ‖, T‖ ⊥, T⊥ ‖, and T⊥ ⊥ [see Eq. (2.8)].

〈T (z)〉, 〈T (c)〉, and 〈T (w)〉: Analytic functions in the
unbounded plane with needles, in the half plane with a needle,
and in the strip with a needle, respectively, which determine
the corresponding stress tensor averages as explained in
Appendix B 1 (see Eqs. (B1), (B2), (B5), (B7)–(B10), (B17),
and (B28) as well as Ref. [73]).

t ≡ tanh(θ/2): Useful short notation according to
Eqs. (3.15) and (B28).

u and v: Strip coordinates [28] parallel and perpendicular,
respectively, to the boundaries of the strip. In the continuum
description the boundaries of the strip are at v = ±W/2 (see
Fig. 2). In the lattice description of a “normal” (“ordinary”)
needle the coordinates u and v of the lattice vertices have
integer (half odd integer) values (see Figs. 1 and 6–8).

uN and vN : Coordinates parallel and perpendicular, respec-
tively, to the strip of the position vector rN = (uN,vN ) of the
center of the needle. As explained in Sec. I and Ref. [28], uN

and vN are lengths in the continuum description used in Sec. II
and in Eqs. (A14) and (A15) of Appendix A, while in the lattice
description used in Sec. IV they are measured in units of the
lattice constant and have integer values for both “ordinary”
and “normal” needles.

W : The number of rows in the lattice model for the strip
or [28] the width of the strip in the continuum description.

w = u + iv: Complex variable specifying the position
vector (u,v) in the strip [see above Eq. (B5)].

xφ = 1/8 and xε = 1: Scaling dimensions of the order-
parameter and energy densities, respectively [see the text
following Eq. (2.4)].

Z‖ and Z⊥: Partition functions corresponding to F‖ and F⊥
[see Eqs. (2.10) and (2.11)].

Z
(i,j )
ST : Partition function of a W × L strip ST without needle

and with boundaries (i,j ) (see Refs. [43] and [45]).
Z([h1][h2]): Partition function of a large system containing

two needles h1 and h2 [see the text following Eq. (B8)].
z = x + iy: Complex variable specifying the position

vector (x,y) in the unbounded plane [see the text following
Eq. (B1)].

�i,j (1/δ): Casimir amplitude describing the universal
contribution −L−1∂�

(i,j )
ST (δ)/∂W = �i,j (1/δ)/W 2 to the dis-

joining pressure per kBT of an (i,j ) strip without needle [see
Eqs. (2.8), (2.9) and Appendix A 2].

�i,j ≡ �i,j (0): Casimir amplitude for an (i,j ) strip of
infinite length L = ∞ and without needle [see the text
following Eq. (2.9)].

�P (1/δ): Casimir amplitude for the double periodic strip
without needle [see the text following Eq. (2.18) and Ap-
pendix A 1].

�P ≡ �P (0) = −π/12.
δ ≡ L/W : Characterizes the shape of the strip [see

Eq. (2.9)]. We call W/L ≡ 1/δ the aspect ratio of the strip.
ε(r): Energy-density operator with its average in the

unbounded plane (bulk) at bulk criticality subtracted [see the
text following Eq. (2.3)] and normalized according to Eq. (2.4).

ζI and ζA: Contributions to Z‖ and Z⊥ which arise via
the small needle expansion from the operator contributions
SI and SA to the normalized Boltzmann weight of the
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needle; they are isotropic and anisotropic with respect to the
needle orientation, respectively [see Eqs. (2.1)–(2.3), (2.13),
and (2.14)].

ϑ ≡ D/(2aN ): Characterizes the size versus the distance to
the boundary for a needle in the half plane with its orientation
perpendicular to the boundary line [see Eq. (3.1)].

ϑ̄ ≡ √
1 − ϑ2 = √

a<a>/aN : Approaches zero if the
closer end of the needle approaches the boundary.

ϑ0: Threshold value of ϑ above which the interaction
f ⊥

−[+](ϑ) between a − boundary of the half plane and a
+ needle perpendicular to it deviates significantly from the
corresponding small needle approximation, i.e., from the last
equation in Eq. (B33) [see the discussion of Fig. 3(a) in the
paragraph between Eqs. (3.10) and (3.11)].

θ ≡ πD/W : Characterizes the size versus the distance to
the boundaries for a needle embedded within the midline of
the strip [see Eq. (3.11)].

κ ≡ exp(−πδ/4): Variable used for the aspect ratio depen-
dence of �i,j in the case of a long strip with L/W ≡ δ � 1
and close boundaries [see Eqs. (A7) and (A9)].

�
(1)
i and �

(1)
j : Strengths of the coupling to the lower

and upper additional outside row, respectively, of fixed spins
generating strip boundaries i and j of “ordinary” or “normal”
character in the lattice model [see Eq. (4.1) and Figs. 1
and 6–8].

λ: Parameter within the lattice model describing the
crossover of the needle orientation from perpendicular (λ = 0)
to parallel (λ = 1) orientation with respect to the boundaries
of the strip [see Eq. (4.7) as well as Figs. 6(c) and 8(c)].

ρi,h(ϑ): Auxiliary function determining the Casimir force
on a needle h in the half plane with boundary i and determining
the disjoining force induced in an (i,i) strip of infinite
length upon inserting a needle h [see Eqs. (3.4) and (3.15),
respectively]. Via Eqs. (3.6) and (3.7) the function ρi,h(ϑ) is
related to the dependence �i,h(1/δ) on the aspect ratio of the
Casimir amplitude of the needle-free strip with boundaries
(i,h).∑

〈inc.〉 and
∑

〈decr.〉: Sum of products of those nearest-
neighbor spins in the crossover Hamiltonian H(O)

cr (λ) the ferro-
magnetic coupling strength of which increases and decreases,
respectively, upon increasing λ [see Eqs. (4.8)–(4.10) and
Fig. 6(c)].∑(+)

〈one〉: Sum of those four spins which are coupled to an
external spin (and carry a northeast arrow) for both needle
orientations shown in Figs. 8(a) and 8(b) [see Eq. (4.16)].∑

〈zero〉: Sum of products of the center spin of the “nor-
mal” (+) needle and of its four nearest-neighbor spins [see

Eq. (4.13)]. These four products are missing in the crossover
Hamiltonian H(+)

cr [see Eq. (4.19)] and the four corresponding
couplings are absent in Figs. 8(a)–8(c).∑̂

〈inc.〉 and
∑̂

〈decr.〉: Sum of products of those nearest-
neighbor spins in the crossover Hamiltonian H(+)

cr (λ) the ferro-
magnetic coupling strength of which increases and decreases,
respectively, upon increasing λ [see Eqs. (4.14), (4.15),
and (4.19) as well as Fig. 8(c)].∑(+)

〈inc.〉 and
∑(+)

〈decr.〉: Sum of those spins which in the
crossover Hamiltonian H(+)

cr (λ) are coupled with increasing
and decreasing strength, respectively, to the external spin
s0 = 1 [see Eqs. (4.17)–(4.19) and Fig. 8(c)].

σ ≡ exp(−2π/δ): Variable used for the aspect ratio depen-
dence of �i,j in the case of a short strip with L/W ≡ δ � 1
and distant boundaries [see Eqs. (A8) and (A10)].

τ̃i,h(ϑ): Auxiliary function with the same character as (and
simply related to) ρi,h(ϑ) [see Eq. (3.5)].

�
(i,j )
ST (δ = L/W ): Universal shape-dependent and scale-

free contribution to the free energy per kBT of L × W strips
with boundaries (i,j ) but without needle (see Eq. (2.8) and
Ref. [43]). �

(P )
ST (δ) denotes the corresponding contribution for

the double periodic strip.
φ(r): Order-parameter-density operator, normalized ac-

cording to Eq. (2.4).
χpq(δ) or χpq(δ/2): Auxiliary functions for the Casimir

amplitudes of W × L strips without a needle and with double
periodic boundary conditions or with (i,j ) boundaries (see
Eq. (A1) or Eq. (A6) as well as Ref. [44]).

〈· · ·〉: Thermal average, which may be specified by means
of subscripts and superscripts, as listed below.

〈· · ·〉bulk: Thermal average for the unbounded plane without
embedded particles [see Eq. (2.4)].

〈· · ·〉half plane: Thermal average for the half plane without
embedded particles [see text above Eq. (2.5)].

〈· · ·〉ST and 〈· · ·〉(i,j )
ST : Thermal average for a strip without

embedded particles and with boundaries (i,j ) [see Eqs. (2.7)
and (2.8)].

〈· · ·〉(i[h]): Thermal average for the half space with boundary
i and an embedded needle h [see Eq. (B17)].

〈· · ·〉(i[h]j ): Thermal average for the strip with boundaries
(i,j ) and an embedded needle h [see Eq. (B28)].

〈· · ·〉([h1][h2]···[hn]): Thermal average for the unbounded plane
with n embedded needles h1,h2, . . . ,hn [see Eqs. (B1)
and (B8)–(B10)].

〈· · ·〉cr: Thermal average based on the lattice crossover
Hamiltonian [see Eqs. (4.5) and (4.6)].
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specified by Eq. (2.8) and consistent with Eq. (B4). Here T (z)
is the usual [38] complex stress tensor which within thermal
averages is an analytic function of z and its normalization is
specified by its transformation law. For two geometries G and G̃

related by the conformal mapping z = z(z̃), the corresponding
analytic functions 〈T (z)〉G and 〈T (z̃)〉G̃ are related by 〈T (z̃)〉G̃ =
(dz/dz̃)2〈T (z)〉G + S/24 with the Schwarzian derivative S =
(z′′′/z′) − (3/2)(z′′/z′)2, where the primes denote derivatives
with respect to z̃. For example, for the mapping z = z(c) = c2/l

considered above Eq. (B2) this relation allows one to obtain
〈T (c)〉G̃ ≡ 〈T (c)〉 in Eq. (B2) from 〈T (z)〉G ≡ 〈T (z)〉([O][O])

according to Eq. (B1).

[74] For the simple needle configuration x1< = −1/k, x1> = −1,
x2< = 1, x2> = 1/k with 0 � k � 1 the mapping is provided by
u + iv = i(W/2)[

∫ z

0 dt/
√

(1 − t2)(1 − k2t2)]/K(k). This maps
the upper and lower halves of the z plane with y > 0 and y < 0
onto the left and right halves of the rectangle or strip ST with
u < 0 and u > 0, respectively. Crossing the x axis outside of
the interval where the needles are, i.e., at |x| > 1/k corresponds
to jumping within the rectangle from (u = −L/2,v) to (u =
L/2,v) which amounts to the periodic boundary condition in u

direction. The more general needle configuration corresponding
to Eq. (B10) is related to the simple one by a special conformal
transformation which preserves the real axis.
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