001     139444
005     20210129212606.0
024 7 _ |a 10.2967/jnumed.113.129007
|2 doi
024 7 _ |a WOS:000333910600011
|2 wos
024 7 _ |a altmetric:2241041
|2 altmetric
024 7 _ |a pmid:24578243
|2 pmid
037 _ _ |a FZJ-2013-05433
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)141877
|a Filss, Christian
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Comparison of $^{18}$F-FET PET and perfusion weighted MR imaging: a PET-MR imaging hybrid study in patients with brain tumors.
260 _ _ |a Reston, Va.
|b SNM
|c 2014
264 _ 1 |3 online
|2 Crossref
|b Society of Nuclear Medicine
|c 2014-02-27
264 _ 1 |3 print
|2 Crossref
|b Society of Nuclear Medicine
|c 2014-04-01
264 _ 1 |3 print
|2 Crossref
|b Society of Nuclear Medicine
|c 2014-04-01
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1416990380_32692
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a PET using O-(2-$^{18}$F-fluoroethyl)-L-tyrosine ($^{18}$F-FET) provides important diagnostic information in addition to that from conventional MR imaging on tumor extent and activity of cerebral gliomas. Recent studies suggest that perfusion-weighted MR imaging (PWI), especially maps of regional cerebral blood volume (rCBV), may provide similar diagnostic information. In this study, we directly compared $^{18}$F-FET PET and PWI in patients with brain tumors. Methods: Fifty-six patients with gliomas were investigated using static $^{18}$F-FET PET and PWI. For comparison, 8 patients with meningiomas were included.We generated a set of tumor and reference volumes of interest (VOIs) based on morphologic MR imaging and transferred these VOIs to the corresponding $^{18}$F-FET PET scans and PWI maps. From these VOIs, tumor-to-brain ratios (TBR) were calculated, and normalized histograms were generated for $^{18}$F-FET PET and rCBV maps. Furthermore, in rCBV maps and in $^{18}$F-FET PET scans, tumor volumes, their spatial congruence, and the distance between the local hot spots were assessed. Results: For patients with glioma, TBR was significantly higher in $^{18}$F-FET PET than in rCBV maps (TBR, 2.28 ± 0.99 vs. 1.62 ± 1.13; P < 0.001). Histogram analysis of the VOIs revealed that $^{18}$F-FET scans could clearly separate tumor from background. In contrast, deriving this information from rCBV maps was difficult. Tumor volumes were significantly larger in $^{18}$F-FET PET than in rCBV maps (tumor volume, 24.3 ± 26.5 mL vs. 8.9 ± 13.9 mL; P < 0.001). Accordingly, spatial overlap of both imaging parameters was poor (congruence, 11.0%), and mean distance between the local hot spots was 25.4 ± 16.1 mm. In meningioma patients, TBR was higher in rCBV maps than in $^{18}$F-FET PET (TBR, 5.33 ± 2.63 vs. 2.37 ± 0.32; P < 0.001) whereas tumor volumes were comparable. Conclusion: In patients with cerebral glioma, tumor imaging with $^{18}$F-FET PET and rCBV yields different information. $^{18}$F-FET PET shows considerably higher TBRs and larger tumor volumes than rCBV maps. The spatial congruence of both parameters is poor. The locations of the local hot spots differ considerably. Taken together, our data show that metabolically active tumor tissue of gliomas as depicted by amino acid PET is not reflected by rCBV as measured with PWI.
536 _ _ |0 G:(DE-HGF)POF2-333
|a 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333)
|c POF2-333
|f POF II
|x 0
536 _ _ |0 G:(DE-HGF)POF2-332
|a 332 - Imaging the Living Brain (POF2-332)
|c POF2-332
|f POF II
|x 1
536 _ _ |0 G:(DE-HGF)POF2-89573
|a 89573 - Neuroimaging (POF2-89573)
|c POF2-89573
|f POF II T
|x 2
700 1 _ |0 P:(DE-Juel1)143792
|a Galldiks, Norbert
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)131627
|a Stoffels, Gabriele
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Sabel, M.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Wittsack, H. J.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Turowski, B.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Antoch, G.
|b 6
700 1 _ |0 P:(DE-Juel1)142359
|a Zhang, Ke
|b 7
|u fzj
700 1 _ |0 P:(DE-Juel1)131720
|a Fink, Gereon Rudolf
|b 8
|u fzj
700 1 _ |0 P:(DE-Juel1)131816
|a Coenen, Heinrich Hubert
|b 9
|u fzj
700 1 _ |0 P:(DE-Juel1)131794
|a Shah, N. J.
|b 10
|u fzj
700 1 _ |0 P:(DE-Juel1)131768
|a Herzog, Hans
|b 11
|u fzj
700 1 _ |0 P:(DE-Juel1)131777
|a Langen, Karl-Josef
|b 12
|u fzj
773 1 8 |a 10.2967/jnumed.113.129007
|b : Society of Nuclear Medicine, 2014-02-27
|n 4
|p 540-545
|3 journal-article
|2 Crossref
|t Journal of Nuclear Medicine
|v 55
|y 2014
|x 0161-5505
773 _ _ |a 10.2967/jnumed.113.129007
|0 PERI:(DE-600)2040222-3
|n 4
|p 540-545
|t Journal of nuclear medicine
|v 55
|y 2014
|x 0161-5505
856 4 _ |u https://juser.fz-juelich.de/record/139444/files/FZJ-2013-05433.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:139444
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)141877
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)143792
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131627
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)142359
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131720
|a Forschungszentrum Jülich GmbH
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131816
|a Forschungszentrum Jülich GmbH
|b 9
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131794
|a Forschungszentrum Jülich GmbH
|b 10
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131768
|a Forschungszentrum Jülich GmbH
|b 11
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131777
|a Forschungszentrum Jülich GmbH
|b 12
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-573
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b POF III
|l Key Technologies
|v Decoding the Human Brain
|x 0
913 1 _ |0 G:(DE-HGF)POF2-333
|1 G:(DE-HGF)POF2-330
|2 G:(DE-HGF)POF2-300
|a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|v Pathophysiological Mechanisms of Neurological and Psychiatric Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |0 G:(DE-HGF)POF2-332
|1 G:(DE-HGF)POF2-330
|2 G:(DE-HGF)POF2-300
|a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|v Imaging the Living Brain
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |0 G:(DE-HGF)POF2-89573
|a DE-HGF
|v Neuroimaging
|x 2
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)1110
|2 StatID
|a DBCoverage
|b Current Contents - Clinical Medicine
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 2
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-4-20090406
981 _ _ |a I:(DE-Juel1)INM-5-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21