000139501 001__ 139501
000139501 005__ 20240712084458.0
000139501 0247_ $$2doi$$a10.1016/j.solmat.2013.10.012
000139501 0247_ $$2ISSN$$a1879-3398
000139501 0247_ $$2ISSN$$a0927-0248
000139501 0247_ $$2WOS$$aWOS:000342267400002
000139501 037__ $$aFZJ-2013-05485
000139501 082__ $$a530
000139501 1001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b0$$eCorresponding author$$ufzj
000139501 245__ $$aOptically active defects in SiC, SiOx single layers and SiC/SiOx hetero-superlattices
000139501 260__ $$aAmsterdam$$bNorth Holland$$c2014
000139501 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1411038717_17264
000139501 3367_ $$2DataCite$$aOutput Types/Journal article
000139501 3367_ $$00$$2EndNote$$aJournal Article
000139501 3367_ $$2BibTeX$$aARTICLE
000139501 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139501 3367_ $$2DRIVER$$aarticle
000139501 520__ $$aWe investigated the evolution of the spectrally resolved absorption coefficients of SiC and SiOx materials as well as of their multilayer systems during thermal annealing and hydrogen passivation, with focus on the nature of optically active defects induced during annealing. We propose that both dangling bonds (paramagnetic defects) and strained bonds (non-paramagnetic defects) formed during annealing contribute to the sub-band gap absorption and that the associated defects can be partially removed by hydrogen reincorporation. The difference in the evolution of the absorption spectra for different sample types upon annealing and passivation are linked to the fundamental difference in their atomic structures. The much lower optical band gap and the significantly higher sub-band gap absorption of SiC single layers in the annealed state as compared to SiOx single layers can be traced back to the lower flexibility of the relatively dense 4-fold coordinated atomic structure of the SiC material.
000139501 536__ $$0G:(DE-HGF)POF2-111$$a111 - Thin Film Photovoltaics (POF2-111)$$cPOF2-111$$fPOF II$$x0
000139501 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000139501 7001_ $$0P:(DE-Juel1)130210$$aAeberhard, Urs$$b1$$ufzj
000139501 7001_ $$0P:(DE-Juel1)130212$$aAstakhov, Oleksandr$$b2$$ufzj
000139501 7001_ $$0P:(DE-Juel1)130217$$aBeyer, Wolfhard$$b3$$ufzj
000139501 7001_ $$0P:(DE-Juel1)130238$$aFinger, Friedhelm$$b4$$ufzj
000139501 7001_ $$0P:(DE-Juel1)130225$$aCarius, Reinhard$$b5$$ufzj
000139501 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b6$$ufzj
000139501 773__ $$0PERI:(DE-600)2012677-3$$a10.1016/j.solmat.2013.10.012$$gp. S0927024813005333$$p3-6$$tSolar energy materials & solar cells$$v129$$x1879-3398$$y2014
000139501 8564_ $$zPublished final document.
000139501 8564_ $$uhttps://juser.fz-juelich.de/record/139501/files/FZJ-2013-05485.pdf$$yRestricted
000139501 909CO $$ooai:juser.fz-juelich.de:139501$$pVDB
000139501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000139501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130210$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000139501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130212$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000139501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130217$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000139501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000139501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130225$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000139501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000139501 9132_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vErneuerbare Energien$$x0
000139501 9131_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000139501 9141_ $$y2014
000139501 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000139501 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000139501 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000139501 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000139501 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000139501 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000139501 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000139501 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000139501 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000139501 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000139501 980__ $$ajournal
000139501 980__ $$aVDB
000139501 980__ $$aI:(DE-Juel1)IEK-5-20101013
000139501 980__ $$aUNRESTRICTED
000139501 981__ $$aI:(DE-Juel1)IMD-3-20101013