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We use inelastic neutron scattering to show that superconductivity in electron-underdoped
NaFe 935C0q 015As induces a dispersive sharp resonance near E,; = 3.25 meV and a broad dispersionless
mode at E,, = 6 meV. However, similar measurements on overdoped superconducting NaFe 935C0g 045AS
find only a single sharp resonance at £, = 7 meV. We connect these results with the observations of angle-
resolved photoemission spectroscopy that the superconducting gaps in the electron Fermi pockets are
anisotropic in the underdoped material but become isotropic in the overdoped case. Our analysis indicates
that both the double neutron spin resonances and gap anisotropy originate from the orbital dependence of
the superconducting pairing in the iron pnictides. Our discovery also shows the importance of the inelastic
neutron scattering in detecting the multiorbital superconducting gap structures of iron pnictides.
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High-transition temperature (high-7',.) superconductivity
in copper oxides and iron pnictdies can be derived from
electron or hole doping to their antiferromagnetic (AFM)
parent compounds [1,2]. Since magnetism may underlie
the electron pairing in high-T, superconductors [3], it is
important to determine how magnetic excitations can
probe the superconducting (SC) electron pairing interac-
tions. For single band copper oxide superconductors, the
neutron spin resonance, a sharp collective magnetic exci-
tation at the AFM ordering wave vector below T, has been
the subject of twenty years’ study and provided strong
evidence for the sign changing nature of the d-wave super-
conducting gap in these materials [4]. In the case of multi-
band iron pnictide superconductors [5,6], band structure
calculations indicate that the Fermi surfaces consist of
hole pockets near the zone center and electron pockets
near the zone corner [7-11]. Although the sign change of
the quasiparticle excitations (nesting) between the hole
and electron pockets also necessitates a resonance at an
energy below the sum of the electron and hole SC
gap energies [12,13], the multiple 3d Fe orbital nature of
the iron pnictides [14,15] means that the SC gaps can be
anisotropic on different Fermi surfaces [16,17]. Therefore,
if the resonance is a direct probe of the quasiparticle
excitations between the hole and electron Fermi pockets,
it should be sensitive to the SC gap energy anisotropy. In
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spite of intensive inelastic neutron scattering (INS) work
on the hole [18-20] and electron-doped [21-24] BaFe, As,
family of iron pnictides, only a broad resonance consistent
with the sign change of the SC pairing has been observed.

For the NaFe _ ,Co,As family of iron pnictides [Fig. 1(a)]
[25,26], the London penetration depth measurements
suggest that the SC gap is highly anisotropic even at
optimal doping [27]. Moreover, angle-resolved photoemis-
sion (ARPES) experiments indicate the presence of a large
SC gap anisotropy in the electron Fermi pockets of the
underdoped regime near x = 0.0175, which is absent in the
hole Fermi pockets; the gap anisotropy disappears upon
increasing x to 0.045 [Figs. 1(c) and 1(d)] [28-30]. A likely
origin [31] of this gap anisotropy is the angular variation
of the relative orbital weight among the d,, and the degen-
erate d,,/,, orbitals along the electron Fermi pockets,
which is absent along the hole Fermi pockets. As such,
this material offers the opportunity to study the role of
orbital dependence in SC pairing via INS.

In this Letter, we present an INS study of spin excitations
in underdoped SC NaFe 935C0 ¢15As coexisting with static
AFM order (T. = 15 K, Ty = 30 K) and its comparison
with overdoped SC NaFe(g35C0oqg4sAs (T, = 18 K)
[Fig. 1(a)] [32]. Our INS experiments reveal that super-
conductivity induces two distinct neutron spin resonances
at the commensurate AFM wave vector Q = (0.5, 0.5, L) in
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FIG. 1 (color online). (a) The electronic phase diagram of
NaFe;_,Co,As, where the arrows indicate the Co-doping levels
of our samples. The temperature dependence of the bulk sus-
ceptibility in the inset shows 7, = 15 K. (b) The schematics of
the c-axis dispersion of the double resonances. (c), (d) The
schematics of Fermi surfaces and SC gaps in underdoped and
overdoped samples near I" and M points [28]. (e) Double reso-
nances obtained by taking temperature difference plots
(3 K-28 K) of constant-Q scans at (0.5, 0.5, 0.5) in
NaFe 935C0g g15AS. (f) Similar data in NaFe( ¢35C0q g45As show-
ing only a single resonance. The horizontal bars in (e) and (f)
indicate instrumental energy resolution.

NaFe( 9g5C0q o15As [Figs. 2(a)-2(c)]; this is an entirely new
behavior which has never been observed in either the iron-
based or copper-based superconductors. While the first
resonance occurring at E,; = 3.25 meV is sharp in energy
and becomes dispersive along the ¢ axis, there is also a broad
dispersionless resonance at E,, = 6 meV [Figs. 2(e)-2(g)].
For electron-overdoped SC NaFe( 935C0y ¢45AS, the double
resonances change back to a single resonance [Fig. 1(f)]
[32]. Our analysis indicates that both the SC gap anisotropy
and the double resonances arise from the orbital dependent
pairing strength, and reveals the important role that INS can
play in probing of the multiorbital structure of supercon-
ductivity in the iron-based superconductors.

We prepared ~5 g single crystals of NaFe( ¢g5C0q o15AS
by the self-flux method. Susceptibility [inset in Fig. 1(a)],
heat capacity [33], and nuclear magnetic resonance [34]
measurements showed that the sample is a homogeneous
bulk superconductor (7, = 15 K) microscopically coexist-
ing with static AFM order. Our neutron scattering experi-
ments were carried out on the thermal (HB-3) and cold
(PANDA) triple-axis spectrometers at the High Flux Isotope
Reactor, Oak Ridge National Laboratory and the FRM-II, TU
Miichen, Germany [22], respectively. At HB-3, we fixed final
neutron energies at £, = 14.7 meV with a pyrolytic graphite
(PG) monochromator and analyzer. At PANDA, We used a
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FIG. 2 (color online). (a)-(c) x"(Q,E) at Q = (0.5,0.5,L)
with L = 0, 0.25 and 0.5, respectively, at 3, 18, 28 and 40 K.
(d)—(g) The difference of L-modulations above and below T, at
E = 2,325, 4.5 and 6 meV, respectively.

focusing PG monochromator and analyzer with a fixed final
neutron energy of £y = 5 meV. The wave vector Q at (q,,
4y, q;) in A~1is defined as (H, K, L) = (q,a/2m, qya/2m,
q.c/2r) reciprocal lattice unit (rlu) using the tetragonal unit
cell (space group P4/nmm, a =~ 3.952 A and ¢ = 6.980 A
at 3 K). In this notation, the AFM Bragg peaks occur at the
(05, 05, L) positions with L = 0.5,1.5,... [25]. The
samples are coaligned in the [H, H, L] scattering zones
with a mosaic less than 2°. Figure 4(a) shows the temperature
dependence of the elastic scattering at Q spp = (0.5,0.5,0.5),
which reveals a clear reduction at the onset of 7, and
dramatic increase below Ty = 30 K [Fig. 4(a)]. These
results suggest that NaFe( 9g5C0( 015As is a homogeneous
electron underdoped superconductor similar to underdoped
SC BaFe,_,T,As, (T = Co, Ni) [Fig. 1(a)] [35,36]. From
earlier ARPES measurements [28—30], we know that the SC
gaps in the electron and hole pockets are quite isotropic for
electron overdoped NaFe( 935C0q o45As [Fig. 1(d)], but the
SC gap becomes highly anisotropic for NaFe 9g5C0g o15AS
[Fig. 1(c)].

In previous INS work on overdoped
NaFe( 935C0( g45AS8, a dispersionless sharp resonance
was found at £, = 7 meV below T, [Fig. 1(f)] [32]. To
explore what happens in the underdoped regime where
superconductivity coexists with AFM static order
[34], we carried out constant-Q scans at wave
vectors Q = (0.5, 0.5, L) with L = 0, 0.25, and 0.5 rlu at
T<T.,T.<T<Ty,andT > Ty on NaFe; 935C0q o15AS.
Figures 2(a)-2(c) show the y"(Q,E) at T =3, 18, 28,
40 K, obtained by subtracting the background scattering
of Q scans in Fig. 3 and correcting for the Bose population
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factor using x"(Q,E)=[1—exp(—E/kgzT)]S(Q,E), where
S(Q, E) is the magnetic scattering function. At 7 = 40 K
(T = Ty + 10 K), the paramagnetic scattering at all three
wave vectors probed are relaxational and can be fitted
with ¥"(Q, E) = E/(I'> + E?) as shown in solid lines in
Figs. 2(a)-2(c). On coolingto T = 28 K(T = Ty — 2 K),
the overall line shape of the scattering remain unchanged.
On further coolingto 7 = 18 K (T = T, + 3 K), while the
scattering at wave vectors Q = (0.5,0.5, L) with L = 0,
0.25 still have Lorentzian line shape (relaxational) [blue
symbols in Figs. 2(a) and 2(b)], a spin anisotropy gap of
~1.5 meV opens at Q gy = (0.5, 0.5, 0.5) [blue symbols
in Fig. 2(c)]. Finally, upon entering into the SC state at
T=3K (T =T.— 12 K), we see that a sharp resonance
and a broad resonance develop at E,;=3.25 and E,, =
6 meV, respectively, at Qapy = (0.5, 0.5, 0.5) [Fig. 2(c)].
In addition, the normal state spin gap of ~1.5 meV
increases to ~3 meV below T, [Fig. 2(c)]. The tempera-
ture difference plot between 3 and 28 K shown in Fig. 1(e)
confirms the presence of superconductivity-induced
double resonances. On changing wave vectors to Q =
(0.5,0.5,0.25) and Q = (0.5,0.5,0), we see a clear
increase in energy of the sharp resonance while the broad
mode remains at E,, = 6 meV [Figs. 2(a) and 2(b)].
However, the low-temperature spin gaps are similar at all
wave vectors.

To probe the c-axis modulations of the low-energy spin
excitations and superconductivity-induced effect, we carried
out constant-energy scans along the [0.5, 0.5, L] direction at
different energies above and below 7. Since there is a low-
temperature spin gap below ~3 meV, the L dependence of
the normal state magnetic scattering at £ = 2 meV can be
obtained by subtracting the data at 7 = 3 K from those at
18 K. The magnetic scattering at £ =2 meV and 18 K
shows a broad peak at Qapy with L = 0.5 rlu [Fig. 2(d)].
At the first resonance energy (E,; = 3.25 meV), supercon-
ductivity induces well-defined peaks centered at Qapy =
[0.5,0.5, L] with L = 0.5, 1.5 [Fig. 2(e)]. The energy of the
first resonance moves to £,; = 4.5 meV at [0.5, 0.5, L] with
L =0, 1, as illustrated in Fig. 2(f). Figure 2(g) shows that
the second resonance at £, = 6 meV is indeed dispersion-
less with superconductivity-induced enhancement below
T, decreases monotonically with increasing L, following
the Fe magnetic form factor.

To confirm the low-temperature spin gap and determine
the wave vector dependence of the resonances, we carried
out constant-energy scans at different energies above and
below T, and above Ty. Figures 3(a)-3(f) show S(Q, E)
along the [H, H, 0] and [H, H, 0.5] directions, respectively.
At E =2 meV, a well-defined Gaussian peak in the nor-
mal state disappears below 7., confirming the presence of
the low-temperature spin gap [Figs. 3(a) and 3(d)].
Comparing E,; = 4.5 meV with L =0 [Fig. 3(b)] and
E,; = 3.25 meV with L = 0.5 [Fig. 3(e)], we see that
the intensity gain of the resonances below T is larger at
L = 0.5. At the second resonance energy E,, = 6 meV
[Figs. 3(e) and 3(f)], superconductivity-induced intensity
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FIG. 3 (color online). (a)-(c) Q scans along the [H, H, 0]
direction at £ =2 meV, E,; = 4.5 meV, and E,, = 6.5 meV,
respectively, with L = 0. (d)—(f) Q scans along the [H, H, 0.5]
direction at £ =2 meV, E,; = 3.25 meV, and E,, = 6 meV,
respectively, for SC NaFe( 9g5C0( 9;5As. The horizontal bars in-
dicate instrumental resolution. The solid lines are fits to Gaussians.

gain decreases with increasing L. By Fourier transforming
the fitted Guassian peaks, we find that the spin-spin corre-
lation lengths above Ty are ¢ =33 +2 A at L =0, 0.5.
At 3 K and L = 0, spin correlation lengths increase to
E=67*2and 52+2A at E,, = 4.5 and E,, = 6.5 meV,
respectively. At 3 K and L = 0.5, they are 75 = 2 and
42 =2 A at 3.25 and 6 meV, respectively.

Figures 4(a)—4(f) summarize the temperature dependence
of the scattering at different energies and wave vectors. At
the elastic AFM Bragg position, we see a clear effect of Ty
and T, [Fig. 4(a)]. For E = 2 meV, spin excitations show a
kink at Ty signaling the static AFM order, and decrease
on cooling below T, [Figs. 4(b) and 4(c)]. From Figs. 4(d)
and 4(f), we see that while the intensity at resonance ener-
gies show kinks at Ty, they increase dramatically below T,.
These results provide conclusive evidence of the presence of
double resonance in underdoped NaFe 935Co0( 15AS.

In iron pnictides, the Fermi surface is composed of
multiple orbitals. In electron doped NaFe;_,Co,As, the
dominant orbital character of the electron pockets would
be either d,, or d,;/,,, depending on the direction in the
Brillouin zone [Figs. 1(c) and 1(d)] [28-30]. Recent theo-
ries and experiments find that the effective strength of
electron correlations can be very different between the d,,,
and d,/,, orbitals [15,37-39]. This may induce orbital-
selective SC pairing strengths, which naturally give aniso-
tropic SC gaps along the electron pockets. The neutron
resonance in the SC state is a bound state at energies just
below the particle-hole excitation energy E, =< A, + A,
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FIG. 4 (color online). (a) The temperature dependence of AFM
peak intensity at Q = (0.5, 0.5, 0.5) with vertical dashed line
indicating 7. = 15 K and Ty = 30 K. (b) and (c) Temperature
dependence of the scattering at £ = 2 meV at Q = (0.5, 0.5, 0)
and (0.5, 0.5, 0.5), respectively. Temperature dependence of the
scattering at (d) E, =325meV and (0.5, 05, 0.5),
(e) E,, = 4.5 meV and (0.5, 0.5, 0), and (f) E,, = 6 meV and
0.5, 0.5, 0.5).

[4]. If the anisotropic SC gap in the electron pocket is large,
as in the underdoped NaFe(9g5Co0q15AS, there are two
characteristic gaps A,; # A,, (respectively associated
with d,, and d,;/,, orbitals). Two resonance peaks are
expected as a result of this separation of energy scales.
As the electron doping is increased to the overdoped
regime, the orbital selectivity of the correlations is reduced
[39], which would give rise to a smaller SC gap anisotropy
with A, = A,,. Therefore, only one resonance peak
would be resolved.

The above picture [31] is supported by our theoretical
calculation of the dynamical spin susceptibility in the
SC state of a multiorbital + — J; — J, model [17,40]. The
Hamiltonian reads H = H, + H;,;. Here, H, contains a
five-orbital tight-binding model adapted from Ref. [41].
We have modified some tight-binding parameters such
that the band structure better fits to the density functional
theory results on NaFeAs. The interaction part H;y
includes matrix J; — J, couplings. Figure 5 shows the
calculated imaginary part of the dynamic susceptibility,
X"(Q, w) where E = hw. Indeed we find two resonance
peaks when the gap anisotropy is large, which turn into one
sharp peak when the gap anisotropy is reduced.

We now turn to several remarks. First, in the under-
doped regime where the SC and AFM states coexist, a
reconstruction of the Fermi surface in the AFM state
may in principle cause a SC gap anisotropy. However,
this mechanism is unlikely because ARPES observes
neither the Fermi surface reconstruction nor any gap
anisotropy on the hole Fermi pocket in the underdoped
NaFe;_,Co,As [28]. Second, one may in principle con-
sider the double spin resonances as originating from the

gap anisotropy shown here, two resonance peaks are obtained.

quasiparticle excitations between two different hole and
electron Fermi pockets with different SC gaps. However,
such an effect would lead to spin resonances at different
wave vectors due to mismatched Fermi surfaces [42].
This is unlike our observation here that both resonances
appear at the same commensurate wave vector. Third, we
have emphasized the orbital selectivity in understanding
the data. Through a spin-orbit coupling, this orbital-
dependent effect may also lead to a spin anisotropy in
the fluctuation spectrum.

In conclusion, we use INS to find two resonances at the
same commensurate AFM wave vector for the underdoped
NaFe( 935Cog g15As, but only one resonance for the over-
doped SC NaFe( ¢35C0q g45As. This is different from the
c-axis dispersion of the resonance in electron-doped
BaFe; ¢Nig ; As, [22] and hole-doped copper oxide super-
conductor YBa,Cu3Og g5 [43]. The doping evolution of the
spin resonance coincides with that of the SC gap anisot-
ropy in ARPES experiments. Our experimental discov-
eries, together with our theoretical analysis, suggest that
both properties arise from the orbital dependence of the
SC pairing. This provides evidence that the orbital selec-
tivity plays an important role in understanding the SC
pairing of the multiorbital electrons in the iron pnictides.
Because the multiplicity of electron orbitals is a distinct
feature of the iron-based superconductors and likely makes
a major contribution to their superconducting pairing, our
results will be important to the eventual understanding of
superconductivity in these and related materials.
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