000139536 001__ 139536
000139536 005__ 20240709082000.0
000139536 0247_ $$2doi$$a10.1179/175355513X13715615193120
000139536 0247_ $$2WOS$$aWOS:000323823000002
000139536 037__ $$aFZJ-2013-05520
000139536 041__ $$aEnglish
000139536 082__ $$a600
000139536 1001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b0$$eCorresponding author$$ufzj
000139536 245__ $$aDefect structure of non-stoichiometric and aliovalently doped perovskite oxides
000139536 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2013
000139536 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1384957793_32294
000139536 3367_ $$2DataCite$$aOutput Types/Journal article
000139536 3367_ $$00$$2EndNote$$aJournal Article
000139536 3367_ $$2BibTeX$$aARTICLE
000139536 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139536 3367_ $$2DRIVER$$aarticle
000139536 500__ $$3POF3_Assignment on 2016-02-29
000139536 500__ $$aMaterials Technology 2013, VOL 28, NO 5.ePrint of Materials Technology(mte196)Maney Online
000139536 520__ $$aFerroelectric oxides are used in a large variety of modern technologies including sensors, transducers, actuators, thin film memories and energy harvesting devices. In that respect, one strategy to obtain tailored materials properties for a specific application is provided by systematically modifying the defect structure in terms of either aliovalent doping or nonstoichiometry. Recent advances in spectroscopic characterisation techniques combined with ab initio calculations have significantly contributed to the understanding of how defects impact the materials properties. This review provides an overview of recent results and lists still open questions to be addressed in future work.
000139536 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000139536 536__ $$0G:(DE-HGF)POF2-152$$a152 - Renewable Energies (POF2-152)$$cPOF2-152$$fPOF II$$x1
000139536 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b1$$ufzj
000139536 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b2$$ufzj
000139536 770__ $$aFunctional Materials for Device and Energy Applications
000139536 773__ $$0PERI:(DE-600)2035155-0$$a10.1179/175355513X13715615193120$$n5$$p241 - 246$$tMaterials technology$$v28$$x1066-7857
000139536 909CO $$ooai:juser.fz-juelich.de:139536$$pVDB
000139536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000139536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000139536 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000139536 9132_ $$0G:(DE-HGF)POF3-139H$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vAddenda$$x0
000139536 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000139536 9131_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vRenewable Energies$$x1
000139536 9141_ $$y2013
000139536 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000139536 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000139536 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000139536 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000139536 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000139536 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000139536 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000139536 920__ $$lyes
000139536 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000139536 980__ $$ajournal
000139536 980__ $$aVDB
000139536 980__ $$aUNRESTRICTED
000139536 980__ $$aI:(DE-Juel1)IEK-9-20110218
000139536 981__ $$aI:(DE-Juel1)IET-1-20110218