001     139536
005     20240709082000.0
024 7 _ |a 10.1179/175355513X13715615193120
|2 doi
024 7 _ |a WOS:000323823000002
|2 WOS
037 _ _ |a FZJ-2013-05520
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 0
|u fzj
|e Corresponding author
245 _ _ |a Defect structure of non-stoichiometric and aliovalently doped perovskite oxides
260 _ _ |a Amsterdam [u.a.]
|c 2013
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1384957793_32294
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Materials Technology 2013, VOL 28, NO 5.ePrint of Materials Technology(mte196)Maney Online
520 _ _ |a Ferroelectric oxides are used in a large variety of modern technologies including sensors, transducers, actuators, thin film memories and energy harvesting devices. In that respect, one strategy to obtain tailored materials properties for a specific application is provided by systematically modifying the defect structure in terms of either aliovalent doping or nonstoichiometry. Recent advances in spectroscopic characterisation techniques combined with ab initio calculations have significantly contributed to the understanding of how defects impact the materials properties. This review provides an overview of recent results and lists still open questions to be addressed in future work.
536 _ _ |a 123 - Fuel Cells (POF2-123)
|0 G:(DE-HGF)POF2-123
|c POF2-123
|x 0
|f POF II
536 _ _ |a 152 - Renewable Energies (POF2-152)
|0 G:(DE-HGF)POF2-152
|c POF2-152
|x 1
|f POF II
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 1
|u fzj
700 1 _ |a Jakes, Peter
|0 P:(DE-Juel1)156296
|b 2
|u fzj
770 _ _ |a Functional Materials for Device and Energy Applications
773 _ _ |a 10.1179/175355513X13715615193120
|p 241 - 246
|n 5
|0 PERI:(DE-600)2035155-0
|t Materials technology
|v 28
|x 1066-7857
909 C O |o oai:juser.fz-juelich.de:139536
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156123
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156296
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-139H
|2 G:(DE-HGF)POF3-100
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-123
|2 G:(DE-HGF)POF2-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|b Energie
|1 G:(DE-HGF)POF2-150
|0 G:(DE-HGF)POF2-152
|2 G:(DE-HGF)POF2-100
|v Renewable Energies
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Technologie, Innovation und Gesellschaft
914 1 _ |y 2013
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21