000139562 001__ 139562
000139562 005__ 20210129212623.0
000139562 0247_ $$2doi$$a10.1109/TCBB.2015.2404810
000139562 0247_ $$2ISSN$$a1545-5963
000139562 0247_ $$2ISSN$$a1557-9964
000139562 0247_ $$2WOS$$aWOS:000368292400027
000139562 037__ $$aFZJ-2013-05546
000139562 041__ $$aEnglish
000139562 082__ $$a620
000139562 1001_ $$0P:(DE-HGF)0$$aDellen, B.$$b0$$eCorresponding Author
000139562 245__ $$aGrowth signature of rosette plants from time-lapse video
000139562 260__ $$aNew York, NY$$bIEEE$$c2015
000139562 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1429513253_28967
000139562 3367_ $$2DataCite$$aOutput Types/Journal article
000139562 3367_ $$00$$2EndNote$$aJournal Article
000139562 3367_ $$2BibTeX$$aARTICLE
000139562 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139562 3367_ $$2DRIVER$$aarticle
000139562 520__ $$aPlant growth is a dynamic process, and the precisecourse of events during early plant development is of majorinterest for plant research. In this work, we investigate thegrowth of rosette plants by processing time-lapse videos ofgrowing plants, where we use Nicotiana tabacum (tobacco) asa model plant. In each frame of the video sequences, potentialleaves are detected using a leaf-shape model. These detectionsare prone to errors due to the complex shape of plants andtheir changing appearance in the image, depending on leafmovement, leaf growth, and illumination conditions. To copewith this problem, we employ a novel graph-based trackingalgorithm which can bridge gaps in the sequence by linkingleaf detections across a range of neighboring frames. We use theoverlap of fitted leaf models as a pairwise similarity measure, andforbid graph edges that would link leaf detections within a singleframe. We tested the method on a set of tobacco-plant growthsequences, and could track the first leaves of the plant, includingpartially or temporarily occluded ones, along complete sequences,demonstrating the applicability of the method to automatic plantgrowth analysis. All seedlings displayed approximately the samegrowth behavior, and a characteristic growth signature wasfound.
000139562 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000139562 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000139562 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b1
000139562 7001_ $$0P:(DE-HGF)0$$aTorras, C.$$b2
000139562 773__ $$0PERI:(DE-600)2158957-4$$a10.1109/TCBB.2015.2404810$$gp. 1 - 1$$n99$$p1-11$$tIEEE ACM transactions on computational biology and bioinformatics$$vPP$$x1557-9964$$y2015
000139562 8564_ $$uhttps://juser.fz-juelich.de/record/139562/files/07044561.pdf$$yRestricted
000139562 8564_ $$uhttps://juser.fz-juelich.de/record/139562/files/07044561.gif?subformat=icon$$xicon$$yRestricted
000139562 8564_ $$uhttps://juser.fz-juelich.de/record/139562/files/07044561.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000139562 8564_ $$uhttps://juser.fz-juelich.de/record/139562/files/07044561.jpg?subformat=icon-180$$xicon-180$$yRestricted
000139562 8564_ $$uhttps://juser.fz-juelich.de/record/139562/files/07044561.jpg?subformat=icon-640$$xicon-640$$yRestricted
000139562 8564_ $$uhttps://juser.fz-juelich.de/record/139562/files/07044561.pdf?subformat=pdfa$$xpdfa$$yRestricted
000139562 909CO $$ooai:juser.fz-juelich.de:139562$$pVDB
000139562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000139562 9130_ $$0G:(DE-HGF)POF2-242$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vSustainable Bioproduction$$x0
000139562 9130_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF2-89580$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x1
000139562 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000139562 9141_ $$y2015
000139562 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000139562 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000139562 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000139562 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000139562 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000139562 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000139562 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000139562 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000139562 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000139562 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000139562 980__ $$ajournal
000139562 980__ $$aVDB
000139562 980__ $$aI:(DE-Juel1)IBG-2-20101118
000139562 980__ $$aUNRESTRICTED