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High-resolution Simulations of Strongly Coupled Coulomb  
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Mathias Winkel

Plasma systems that can be experimentally studied today are reaching from hot, low-density  
plasmas of fusion research to cold dense solids that are dominated by quantum-mechanical  
effects and strong correlations. Their consistent theoretical description requires a multitude  
of effects to be considered. In particular, strong correlations pose significant difficulties here. 
Computer simulations provide a tool for bridging between experiments and theory as they do not 
suffer from these complications.

The experimentally accessible optical and transport properties in plasmas are primarily  
featured by the electronic subsystem, such as its collective behavior and interaction with the ionic  
background, i.e. Coulomb collisions. In this work the collisional behavior of warm dense bulk 
matter and collective effects in nano plasmas are investigated by means of molecular dynamics 
simulations. To this end, simulation experiments performed earlier on electronic resonances  
in metallic nano clusters are extended to significantly larger systems. The observed complex res-
onance structure is analyzed using a newly introduced spatially resolved spectral diagnostic. As a 
second field of study, the bulk collision frequency as the key parameter for optical and transport 
properties in warm dense matter is evaluated in a generalized Drude approach for a hydrogen-like 
plasma. Here, the combined high-field and strong coupling regime that is only scarcely covered 
by theoretical models is of primary interest.

To solve the underlying N-body problem for both applications, a highly parallel Barnes-Hut  
tree code is utilized and considerably extended with respect to functionality, versatility, and scala-
bility. With its new excellent scalability to hundred thousands of processors and simulation setups 
consisting of up to billions of particles and its support for periodic boundary conditions with an 
efficient and precise real-space approach it delivers highly resolved results and is prepared for 
further studies on the warm dense matter regime. Here, its unique predictive capabilities can 
finally be used for connecting to real-world experiments.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part 
of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences 
and the supercomputer facility in one organizational unit. It includes those parts of the scientific 
institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main 
research methodology.
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High-resolution Simulations of Strongly Coupled
Coulomb Systems with a Parallel Tree Code

Despite intense research, the properties of strongly coupled Coulomb systems have not
yet been completely understood. However, with the advent of Free Electron Lasers with
wavelengths reaching down to tenths of nanometers and intensities beyond 1016 W/cm−2

during the last years, it has become possible to experimentally probe the warm dense
matter regime up to solid densities.

Now, systems that can be studied are reaching from hot, low-density plasmas of fusion
research to cold dense solids that are dominated by quantum-mechanical effects and
strong correlations. Their consistent theoretical description requires a multitude of
effects to be considered. In particular, strong correlations pose significant difficulties
here. Computer simulations provide a tool for bridging between experiments and theory
as they do not suffer from these complications.

The experimentally accessible optical and transport properties in plasmas are primarily
featured by the electronic subsystem, such as its collective behavior and interaction with
the ionic background, i. e. Coulomb collisions. In this work the collisional behavior of
warm dense bulk matter and collective effects in nano plasmas are investigated by means
of molecular dynamics simulations. To this end, simulation experiments performed
earlier on electronic resonances in metallic nano clusters are extended to significantly
larger systems. The observed complex resonance structure is analyzed using a newly
introduced spatially resolved spectral diagnostic. As a second field of study, the bulk
collision frequency as the key parameter for optical and transport properties in warm
dense matter is evaluated in a generalized Drude approach for a hydrogen-like plasma.
Here, the combined high-field and strong coupling regime that is only scarcely covered
by theoretical models is of primary interest.

To solve the underlying N -body problem for both applications, a highly parallel Barnes-
Hut tree code is utilized and considerably extended with respect to functionality, ver-
satility, and scalability. With its new excellent scalability to hundred thousands of
processors and simulation setups consisting of up to billions of particles and its support
for periodic boundary conditions with an efficient and precise real-space approach it
delivers highly resolved results and is prepared for further studies on the warm dense
matter regime. Here, its unique predictive capabilities can finally be used for connecting
to real-world experiments.





Hoch aufgelöste Simulationen stark gekoppelter
Coulomb-Systeme mit einem parallelen Tree-Code

Die Eigenschaften stark gekoppelter Coulombsysteme sind trotz intensiver Forschung
nicht vollständig verstanden. Mit dem Aufkommen von Freie-Elektronen-Lasern, die
Strahlungsintensitäten jenseits 1016 W/cm−2 bei Wellenlängen deutlich im sub-Nanometer
Bereich liefern, stehen jedoch erstmals die experimentellen Möglichkeiten zur Verfügung,
mit optischen Pump-Probe Experimenten bis zu Festkörperdichten vorzudringen.

Systeme, die untersucht werden können reichen damit von den heißen, dünnen Plasmen
der Fusionsforschung bis hin zu kalten, von quantenmechanischen Effekten und starken
Korrelationen dominierten Festkörpern. Für ihre konsistente theoretische Beschreibung
muss entsprechend eine Vielzahl physikalischer Effekte einbezogen werden. Insbeson-
dere starke Korrelationen führen dabei zu großen Schwierigkeiten. Mit Computersim-
ulationen, die dieser Einschränkung nicht unterliegen, stehen jedoch Werkzeuge zur
Verfügung, um die Lücke zwischen experimentellen und theoretischen Möglichkeiten zu
schließen.

Die experimentell erreichbaren optischen und Transporteigenschaften in Plasmen wer-
den primär durch die Eigenschaften des elektronischen Subsystems, etwa kollektive
Effekte und Wechselwirkungen mit dem Ionenhintergrund – also Coulomb-Stöße – do-
miniert. In dieser Arbeit werden das Stoßverhalten warmer dichter Bulk-Materie sowie
kollektive Effekte in Nanoplasmen mittels Molekulardynamiksimulationen untersucht.
Hierzu werden frühere Simulationsexperimente zu elektronischen Resonanzen in met-
allischen Nanoclustern zu deutlich größeren Systemen ausgedehnt und die gefundenen
Resonanzen mit einer neuen, räumlich aufgelösten spektralen Diagnostik analysiert. Als
zweites Anwendungsgebiet wird die Bulk-Stoßfrequenz als Schlüsselparameter für optis-
che und Transporteigenschaften in warmer dichter Materie in einem verallgemeinerten
Drude-Ansatz für ein wasserstoffartiges Plasma ausgewertet. Von primärem Interesse
sind hier Parameterbereiche mit starkem externem Feld sowie starker Kopplung, die
mit theoretischen Modellen nur unzureichend abgedeckt werden können.

Um das beiden Anwendungen zugrundeliegende N -Teilchen-Problem zu lösen wird
ein paralleler Barnes-Hut Treecode genutzt und in Bezug auf Funktionalität, Vielseit-
igkeit sowie Skalierbarkeit deutlich erweitert. Mit seiner nun exzellenten Skalierbarkeit
zu hunderttausenden von Prozessoren und simulierten Systemen aus Milliarden von
Teilchen sowie der Unterstützung für periodische Randbedingungen einem effizienten
und präzisen Echtraumansatz liefert er hoch aufgelöste Ergebnisse und ist auf weitere
Anwendungen zum Warm-Dense-Matter Regime vorbereitet. Hier können seine einzi-
gartigen Fähigkeiten genutzt werden um die Verbindung zu Experimenten in der realen
Welt zu schlagen.
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1 Introduction

~ Wie verhalten sich die verschiedenen Körper gegenüber schnellen Schwingun-
gen? [. . . ] Von diesem Gesichtspunkt aus ergibt sich also ein enger Zusammenhang
[der] Arbeiten über elektrische Schwingungen mit der optischen Untersuchung der
Körper. [. . . ] Der Gang [. . . ], den hierbei die Optik gegangen ist, ist meines Eracht-
ens typisch für alle Disziplinen, die [. . . ] durch Untersuchung der inneren, mehr
versteckten Eigenschaften der Körper den Zusammenhang mit Nachbardisziplinen
und dadurch die Vereinheitlichung der Wissenschaft suchen. Und dabei ist eine
wechselseitig Ergänzung von Experiment und Theorie unerläßlich. } [1]

~ How do objects behave under the influence of fast oscillations? [. . . ] So, from
this perspective a connection of the work on electrical oscillations to the optical
investigation of physical objects is resulting. [. . . ] In my opinion, the path [. . . ]
pursued by optics is typical for all disciplines that [. . . ] are – by analyzing the inner,
more hidden properties of objects – searching for connections to neighboring fields
and thus a unification of science. In the course of this, mutual supplementation of
experiment and theory is de rigueur. } [1], translated from the German original.

Though not being explicitly labeled as such, the field of plasma physics and neighboring
disciplines have captured a significant amount of interest of physicists for almost one
hundred years now. Already at the beginning of the 20th century, the foundations
for today’s conception of science were laid. Around and after Albert Einstein’s
annus mirabilis, fundamental concepts for the structure and mathematical description
of world’s smallest scales (quantum mechanics) as well as the architecture of space
and time itself (general relativity) were developed. However, besides these dominating
advances uncountable other scientific contributions were made.

Since this exciting time, tremendous progress in experimental possibilities for studying
the extremest states of matter in our world has been made. For example we are now
able to penetrate optically opaque solid metal blocks with high-frequency and high-
intensity radiation from novel light sources such as the free electron laser to study their
inner structure [2]. Exciting a multitude of internal degrees of freedom, we generate
hard x-rays and fast bunches of particles, discover surprising resonance phenomena and
unexpected magnitudes of absorption and reflectivity. Thus, such experiments pose as
many new questions as they give answers to existing problems.

1



1 Introduction

Paul Drude was quite correct in stating that progress in experiment and theory are
indispensably geared to each other. Progress in either field strongly depends on findings
in the other. However, what he could not see at the beginning of the 20th century is a
third tool for investigation of matter’s inner structure, a tool that is widely used today.
With the development of digital computers and their incredible progress during the last
60 years, it has become possible to simulate the behavior of physical objects at any
scale. As perfectly controllable experiments, computer simulations have been rapidly
established as the bridge between models developed in theory and data obtained in
real-world experiments.

In computer experiments, virtually all parameters can be adjusted, models can be
simplified or made more complex, and experiments can be repeated at any time. In
that sense, they prove or falsify model images of the real world by applying a multitude
of theoretical concepts at once. Naturally, computer simulations can neither replace
pen-and-paper theory nor physical measurements of real objects supplement both and
are de rigueur in science today.

In this thesis, we will make use of molecular dynamics simulations on highly parallel
computers for examining collective phenomena in plasmas which are connected to ex-
perimentally accessible observables. The systems to be studied cover both nano clusters
from a few dozen to hundred thousands of particles in vacuum as well as bulk matter
with its surfaces at infinity. Particle densities and temperatures in our experiments will
range from gaseous to solid state. In the latter, the particles are close enough to form
long-range correlated systems that pose significant difficulties when approached with
theoretical methods. Further details on the phenomena to be examined are given in
Section 1.5 and the subsequent chapters. Hitherto, we will describe some fundamental
concepts and parameters necessary for dealing with particle-based plasma physics and
electrodynamics and establish the connection between microscopic theoretical models
and the experimentally accessible world. We will see in the following, that the envisaged
simulations on microscopic properties of many-particle systems pose a computationally
challenging N -body problem. Its solution requires today’s most powerful computers
and extremely efficient algorithms. Thus, covering topics from physics and computer
science, this work aims at bridging between theory and experiment, weak and strong
coupling, nano scale and bulk matter by means of creating a new workhorse tool and
applying it in two different regimes of warm dense matter.

2



1.1 Fundamental plasma parameters

1.1 Fundamental parameters for characterization of
warm dense matter

The greek word πλάσμα ("structure") has been introduced by Langmuir in the descrip-
tion of his experiments with gas discharge tubes:

~ [. . . ] the ionized gas contains ions and electrons in about equal numbers so that
the resultant space charge is very small. We shall use the name plasma to describe
this region containing balanced charges of ions and electrons. } [3]

His definition of a state of matter involving free charges has essentially been kept until
today. However, density and temperature ranges to which this description applies have
been significantly broadened. From very thin interstellar matter to electrons in bulk
metals and even the quark-gluon matter in nuclei contain free charges. They are evident
inside ultra-cold superconductors as well as in the hot solar fusion zone. Research on
the ubiquitous plasma state is performed in a multitude of physical disciplines from
astronomic scales down to the vicinity of the smallest particles we currently can imagine.

Plasmas – or many-particle systems subject to Coulomb interaction in general – are
essentially characterized by only a few statistical observables. First of all, the compo-
sition is of interest. Usually, electrons are the dominant charge carriers due to their
small mass and hence large mobility in comparison to the ions, which are at least 1,800
times heavier. For the ions, every charge state of each chemical element that is present
in the plasma can be considered as an additional particle species. In this chemical pic-
ture [4], conversion from one same-element species to another is possible via ionization
or electron capture processes and can be described using rate equations and coupled
mass-action laws, see e. g. [5–8]. Each species c, including electrons, has its own physical
features, such as mass mc and charge qc as well as statistical observables. Among them
are the number density

nc = Nc

V
(1.1)

with the total number of particles Nc of species c and the system volume V ; the tem-
perature Tc that is, via the kinetic or thermal energy

Etherm,c = 3
2NckBTc =

Nc∑
i=1

mc

2 |~vc,i|
2 (1.2)

with the velocity ~vc,i of the ith particle of species c connected to the thermal velocity [9]

vtherm,c =
√

3kBTc
mc

(1.3)
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1 Introduction

where kB is Boltzman’s constant. The sum in (1.2) runs over all particles of species
c. Considering only macroscopically neutral systems, we have

qelnel =
∑
c 6=el

qcnc , (1.4)

where the sum runs over all ion species present and the subscript el denotes electronic
observables. The species charge number Zc is defined via

qc = −Zc · qel , (1.5)

an average ionic charge state can be given as

Zavg = nel∑
c 6=el nc

. (1.6)

Neglecting ionization processes, this – in general fractional – average charge can be
used to apply two-species treatments to situations where multiple ionic charge states
are present. Besides these macroscopic and statistically motivated observables, phe-
nomenological considerations stimulate the definition of a number of additional param-
eters. These provide information on the prevailing interaction regime – quantum or
classical, weak or strong coupling, high or low frequency – that is actually dominant in
the system.

The widely used degeneracy parameter

Θ = kBTel
E(Fermi) with E(Fermi) = ~2

2mel
(3π2nel)2/3 (1.7)

is the ratio of electron thermal to Fermi energy and accordingly indicates the impor-
tance of degeneracy effects. If the thermal energy is much larger than E(Fermi), i. e.
Θ� 1, a classical treatment is sufficient, whereas Θ . 1 requires inclusion of quantum
effects such as Pauli blocking and Heisenberg uncertainty.

An analogous definition holds for the coupling or nonideality parameter

Γc = E(Coulomb)
c

kBTc
with E(Coulomb)

c = q2
c

4πε0

1
dc
, (1.8)

where the average interparticle distance

dc =
(4

3πnc
)−1/3

(1.9)

is called Wigner-Seitz radius. Being the ratio of Coulomb to thermal energy, the
value of Γ indicates the importance of interparticle correlations. For Γ � 1, species c
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1.1 Fundamental plasma parameters

can be treated as an ideal gas. In the case of Γ & 1, the species is approaching fluid
and finally solid state. Then, the structure factor [10]

Sc(~q) =
〈

1
Nc

Nc∑
j,k=1

ei ~q·(~Rj−~Rk)
〉

(1.10)

with the time or (via ergodicity equivalent) ensemble average 〈·〉 and the particle posi-
tions ~R1...Nc cannot be set to unity but has to be used explicitly in theoretical deriva-
tions. With the exception of static regular lattices, Sc(~q) cannot be given analytically.
This makes the extension of theories into the region of Γ & 1 at best cumbersome and
normally requires numerical computation of the relevant observables.

When examining the plasma systems we are studying here on a macroscopic scale, they
appear to be neutral, i. e. not charged at all. On the microscopic scale, though, electri-
cally charged particles – electrons and ions – are present. This apparent contradiction
results from the balancing of charges when going beyond the scale of individual parti-
cles and considering larger volumes. Such a compensation effect is already present on
a mesoscopic scale, where the electrons are moving freely in front of the ionic back-
ground. When looking onto an individual ion or any other system-internal charge from
a sufficient distance, its charge is effectively screened by the surrounding electrons. The
corresponding effective potential can be characterized with an additional exponential
factor to yield the Debye or Yukawa potential [4, 11–13]

Φ(Debye)(r) = qc
4πε0

1
r
· e−r/λD . (1.11)

Formally, this is the solution to the linearized Poisson-Boltzmann equation which is
derived by replacing the charge density in the Poisson equation (1.25) with the Boltz-
man-distributed particle density for finite temperature and Coulomb interaction [9].
The Debye-Hückel screening length

λD =
(∑

c

ncq
2
c

ε0kBTc

)−1/2

(1.12)

represents the distance where the effective (screened) potential has decreased by a factor
of 1/e with respect to the usual Coulomb interaction (1.27). Despite its analogous
structure, the Yukawa potential is used for modeling interaction in particle physics
with massive gauge bosons which is a completely different physical effect. There, λ = 2π~

mc

is the Compton wavelength of the virtual charge carrier. For photons that mediate
the electromagnetic interaction, m = 0 and the Yukawa potential reduces to the
Coulomb interaction.
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1 Introduction

When driving a free electron gas to collective motion, the plasma frequency or Lang-
muir frequency [3, 11, 14]

ωpl =
√
nelq2

el
ε0mel

(1.13)

is its characteristic frequency if thermal motion is neglected. Since

λD · ωpl =
√
kBTel
mel

= vtherm , (1.14)

a thermal electron moves by oneDebye length λD during one plasma period. Maximum
energy transfer from an external wave with frequency ωlaser to the electronic system
results for resonant excitation, i. e. ωlaser = ωpl. As this is only valid for free electrons,
a multitude of effects that influence plasma oscillation can be studied. For example,
due to interaction of the electrons with plasma ions, this resonant coupling suffers from
damping and resonance shifts.

Furthermore, if the thermal movement of the electrons is included, the electron pres-
sure contributes an additional restoring force which modifies the frequency of collective
oscillation (1.13) to read

ω2
Bohm-Gross(k) = ω2

pl + 3 k2 v2
therm,el . (1.15)

This is the Bohm-Gross dispersion relation [15]. On spatial scales larger than λD, the
electron pressure only plays a secondary role. However, for small wavelength scales the
thermal velocity can be comparable to the phase velocity vph := ω/k. Electrons moving
with vph move in phase with the plasma wave. Hence, they experience a stationary
field that does not vanish in the cycle average and energy transfer between wave and
electrons is possible. This effect is called Landau damping. In contrast to collisional
damping, due to its reversibility this collisionless effect is not related to real dissipation
and increase of entropy [11].

For nonrelativistic intensities, propagation of electromagnetic waves in a plasma is in
general only possible for ωlaser > ωpl. Going below the plasma frequency, the electrons
are fast enough to follow the field oscillation. Then, the wave energy is converted to
oscillatory electronic motion that itself leads to emission of Bremsstrahlung and finally
total reflection of the incident wave. As ωpl ∝

√
nel, there is a critical electron density

ncrit = ε0mel

q2
el
· ω2

laser . (1.16)

For subcritical (underdense) plasmas nel < ncrit, wave propagation is possible. For
supercritical (overdense) plasmas with nel > ncrit, it is prohibited. In density gradients,
classical total reflection in the image of geometrical optics occurs at the nel = ncrit
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1.1 Fundamental plasma parameters

surface. Several further details on propagation and effects in under- and overdense
systems can be found in [16].

Finally, though not being a plasma parameter, the strength of the external driver field
has to be characterized. This is by convention done via the quiver velocity

vosc = qelEL

melωlaser
, (1.17)

the quiver amplitude

xosc = qelEL

melω2
laser

, (1.18)

and the ponderomotive potential

Φpond = qelE
2
L

4melω2
laser

. (1.19)

These are the velocity, amplitude and quiver energy acquired by a resonantly moving
electron in an electromagnetic wave with amplitude (maximum field strength) EL [16].
The corresponding intensity is

IL = ε0cE
2
L

2 . (1.20)

The ratio between quiver and thermal energy separates the high- and low-intensity
regimes. For vosc � vtherm, the random thermal motion dominates; for vosc � vtherm,
the directed quiver movement is prevailing. In addition, as soon as the normalized
quiver velocity

ṽosc = vosc
c

(1.21)

approaches unity, relativistic motion of the electrons has to be considered consistently.
In contrast to vosc and ṽosc that specify the fundamental relevance of the external field,
the ratio between quiver amplitude and average particle distance dion, see (1.9), indicates
the relevance of correlated collisions in microscopic considerations. For xosc � dion,
every electron will be scattered at several ions during a laser cycle which results in a
randomization of their trajectories. In contrast, for xosc � dion the electrons effectively
oscillate in front of an individual ion and thus experience multiple scattering events at
the same center. This effect, which is referred to as correlated collisions can lead to
enhanced particle deflection [17].

Figures 1.1 and 1.2 give an overview of the different regimes that are specified by these
plasma parameters. The region of warm dense matter that lies in the primary focus of
contemporary plasma physics, covers densities of nel = 1 × 1018 . . . 1 × 1027 cm−3, i. e.
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Figure 1.1: Density-temperature plane for a fully ionized hydrogen plasma. Several
isolines for the degeneracy parameter Θ (1.7) and nonideality parameter
Γ (1.8) as well as the regimes covered in this thesis are highlighted.
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Figure 1.2: Wavelength-intensity plane with isolines vosc = vtherm for Tel = 2 eV, the
relativistic intensity ṽosc = 1, and ω = ωpl for nel = 1 × 1022 cm−3. The
intensities used for the applications in this work lie sufficiently below the
relativistic threshold and cover weak and strong field regimes as well as the
high- and low-frequency region. In addition, some prominent light sources
are included to show today’s experimental possibilities. The meaning of
the abbreviations and a list of the depicted systems is given in the text.
The region highlighted in red corresponds to the aluminum experiment
by Nagler et al. [2].
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up to and beyond solid density, and temperatures of kBTel = 0.1 . . . 1,000 eV. This em-
braces ideal and weakly coupled systems as well as strongly correlated quantum matter
and hence applications for example in fields such as solar physics and the ICF (inertial
confinement fusion). The phenomena to be studied in Chapters 6 and 7 are highlighted
in the figures. With a degeneracy parameter Θ = 0.1 . . . 10,000, they are non-degenerate
or weakly degenerate – a classical or pseudo-potential treatment is possible to include
quantum effects in lower order. Furthermore, they are subject to nonideality param-
eters Γ = 0.01 . . . 50 and thus cover regimes from ideal to strongly correlated matter.
As discussed in Section 1.4, this broad range is an ideal application for molecular dy-
namics simulations as performed in this thesis. As visible in Figure 1.2 our applications
comprise the non-relativistic regime vosc � c. Accordingly, relativistic effects can be
neglected in the following.

The introductory example on absorption saturation in aluminum [2] is included in Fig-
ure 1.2 to highlight today’s experimental possibilities on warm dense matter. In ad-
dition, Figure 1.2 shows regions of wavelengths and intensities that can currently be
covered by Free Electron Laser (FEL) installations as representatives of the most pow-
erful light sources available today. The abbreviations in the figure represent

• Free Electron Laser at DESY, Hamburg, Germany:
FLASH(1) [18], FLASH(2) [19],

• FEL at Thomas Jefferson Lab, Newport News, USA,
Infrared and Ultraviolet Beamline: JLAB-FEL(IR), JLAB-FEL(UV) [20],

• Linac Coherent Light Source at SLAC National Accelerator Laboratory,
Menlo Park, CA, USA: LCLS(1) [21], LCLS(2) [22],

• SPring-8 Angstrom Compact Free Electron Laser, Riken/Harima, Japan:
SACLA(1) [23], SACLA(2) [24],

• Free Electron Laser for Multidisciplinary Investigations, Trieste, Italy:
FERMI [25–27],

• Shanghai Deep-Ultraviolet FEL, Shanghai, China: SDUV-FEL [28, 29].

In cases where only pulse powers instead of intensities are published, a focal spot di-
ameter of 1 . . . 15µm are assumed for the data. These cases are marked with a star
∗ in the figure. Up-to-date reviews on FEL technology and the current status of in-
stallations worldwide can be found in [30, 31]. The Petawatt Hoch-Energie Laser für
SchwerIoneneXperimente (PHELIX, Darmstadt, Germany) [32] is included in the figure
as one representative for conventional, optical high-power laser systems. Clearly, with
the radiation from these installations it is now possible to probe the warm dense matter
regime in laboratory experiments, providing fresh impetus to theory and modeling of
this complex state.
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1.2 Maxwell’s equations and the dielectric function

1.2 Maxwell’s equations and the dielectric function –
connection to optical and transport properties

Classical electrodynamics, the theoretical framework for treating plasmas of electrically
charged particles is described by Maxwell’s equations [33–35]

div ~E = %

ε0
, div ~B = 0 , (1.22)

curl ~E = −∂
~B

∂t
, curl ~B = µ0~j + µ0ε0

∂ ~E

∂t
(1.23)

with the electric and magnetic fields ~E ≡ ~E(~r,t) and ~B ≡ ~B(~r,t), the charge and
current densities % ≡ %(~r,t) and ~j ≡ ~j(~r,t), and the permittivity ε0 and permeability
µ0, respectively.

In the simplified electrostatic picture, all differentiations with respect to time – including
the current density (particle velocity) – vanish and the induction law in (1.23) reduces
to curl ~E ≡ 0. This is equivalent to writing ~E as the gradient of a scalar potential
Φ ≡ Φ(~r,t)

~E = − grad Φ . (1.24)

With the Gauss law (1.22), this yields Poisson’s equation

∆ Φ = − %

ε0
. (1.25)

The solution to (1.25) finally reads

Φ(~r) = 1
4πε0

∫ %(~r′)
|~r − ~r′|

d3~r′ , (1.26)

which for a single isolated charge q at the origin with %(~r) = q · δ(~r) yields [34, 35]

Φ(Coulomb)(~r) = 1
4πε0

q

|~r|
. (1.27)

This is the Coulomb potential.

Naturally, the assumption of electrostatics neglects the generation of magnetic fields
via the induction law 1.23 and is becoming invalid for rapidly changing electric fields
or fast moving particles where the time derivatives and currents cannot be assumed to
be small.

Being exposed to radiation fields, the matter under examination is not only passively
influenced, but modifies the electromagnetic wave itself. For example, the dispersion
relation inside any medium strongly depends on its microscopic properties. Experimen-
tally accessible observables are for example the frequency and wave number dependent
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• absorption coefficient α(~k,ω) and emission coefficient j(~k,ω),
• index of refraction n(~k,ω),
• reflectivity R(ω),
• conductivity σ(~k,ω).

These observables are all closely connected to the dielectric function ε(~k,ω) that is
introduced when transferringMaxwell’s equation into a medium. Assuming harmonic
time dependence for the magnetic field ~H ≡ ~H(~k,ω) and the electric field ~E ≡ ~E(~k,ω),
they read in wave number/frequency space [34, 35]

iωµ ~H = c curl ~E (1.28)
iωε ~E = −c curl ~H , (1.29)

where the dielectric function ε ≡ ε(~k,ω) and the magnetic susceptibility µ ≡ µ(~k,ω) are
in general also functions of wave vector ~k and frequency ω. Neglecting the magnetic
response, i. e. setting µ ≡ 1 and after eliminating the magnetic field, the wave equation
for ~E reads (

∆ +ε(~k,ω)ω
2

c2

)
~E(~k,ω) = 0 , (1.30)

that for harmonic plane waves with amplitude EL

~E(~k,ω) = EL · ei(
~k·~r−ωt) (1.31)

yields the dispersion relation

k2 = ε(~k,ω)ω
2

c2 . (1.32)

Thus, the wave vector ~k is in general a complex quantity ~k = Re{~k}+ i Im{~k} and it is
expedient to split the space-dependent part of the phase factor

ei~k·~r = ei Re{~k}·~r + e−Im{~k}·~r . (1.33)

Clearly, the imaginary part of ~k describes damping of the wave due to presence of the
medium. Utilizing a convention used in classical electrodynamics, the wave number can
be written as [34, 35]

k =
(
n(k,ω) + i c2ωα(k,ω)

)
ω

c
=
√
ε(k,ω)ω

c
(1.34)

with the index of refraction n and absorption coefficient α. Expressed in terms of Re{ε}
and Im{ε} they read

α = ω

c n
Im{ε} (1.35)

n = 1√
2

√
Re{ε}+ |ε| . (1.36)
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Governing wave propagation in media, the dielectric function is also related to reflec-
tivity. For example, when studying a step-like transition from vacuum (ε ≡ 1) into
a medium with nontrivial dielectric function ε(ω), the ratio of reflected to incident
intensity is given by Fresnel’s formula [36]

R(ω) =
∣∣∣∣∣∣
√
ε(ω)− 1√
ε(ω) + 1

∣∣∣∣∣∣
2

(1.37)

for normal incidence, i. e. ~k perpendicular to the surface.

Finally, the dynamic (ac-)conductivity σ(ω) is also connected to the dielectric function.
In the long-wavelength limit ε(ω) = limk→0 ε(k,ω) this relation reads [36]

σ(ω) = iωε0(1− ε(ω)) . (1.38)

The static conductivity σ(dc) = limω→0 σ(ω) is also an important observable in experi-
mental studies.

As we have seen, knowledge about the dielectric function ε(k,ω) is essential to describe
the optical observables. Accordingly, a first-principles theory for the dielectric function
is necessary to describe interaction of light with matter. The fundamental concepts
presented here will be supplemented by such a microscopic theory for the dielectric
function ε and the electric conductivity σ(k,ω) in the next Section 1.3.

1.3 Lorentz plasma and Drude model

Already directly after publication of the plum-pudding model of the atom by Thom-
son [37] in 1904 and only few years after the actual discovery of the electron in 1897 [38],
Lorentz published his first-principles model on microscopic properties of metals and
dielectrics [39–41] during Einstein’s annus mirabilis 1905. It is based on the idea of
electrons that are bound to their atom by a linear restoring force. They are allowed to
perform damped harmonic oscillations around their position of rest. The equation of
motion for the electron’s displacement ~r reads

m
d2

dt2~r = qel · ~E(t)︸ ︷︷ ︸
Force from
external
field

− m

τ

d
dt~r︸ ︷︷ ︸

Relaxation due
to friction

− mω2
0~r︸ ︷︷ ︸

Harmonic
restoring
force

. (1.39)

Despite its simplicity, the model already allows for a fundamental microscopic under-
standing of optical features of metals and dielectrics, e. g. dispersion, absorption, optical
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line width. An instructive analysis is given in [42]. Furthermore, the model gives intu-
itive explanations for results from rigorous quantum mechanical analyses that will not
be discussed in further detail here.

Concentrating on plasma properties that result from the presence of free charge carriers,
we omit the restoring force by setting mω2

0~r ≡ 0. With the relaxation time τ , this leads
to the Drude model [43–45]. For the electron momentum ~p = m · d

dt~r it reads

d
dt~p = qel · ~E(t)− 1

τ
· ~p . (1.40)

Assuming a harmonic external field ~E(t) = ~E ·e−iωt and a harmonic isotropic momentum
response ~p(t) = ~p · e−iωt, the equation of motion (1.40) yields

~p = 1
−iω + ν

~E , (1.41)

where ν := 1/τ has been defined. Being only a shorthand notation for now, the relevance
and physical interpretation of ν will be discussed in Section 1.4. With the current
density

~j = qel · n
p

m
(1.42)

and plasma frequency (1.13), equation (1.41) reads

~j =
ε0ω

2
pl

−iω + ν
~E . (1.43)

Thus, the electric conductivity σ, that – in the sense of a susceptibility – connects
internal currents to the external fields via a simple Ohm’s law

~j = σ · ~E (1.44)

is defined by

σ(ω) =
ε0ω

2
pl

−iω + ν
(1.45)

in the Drude model. With this approach, good explanations for ac- and dc- conductiv-
ity σ in metals, the electron contribution to the thermal conductivity κ and the Hall
effect could already be given at the beginning of the 20th century. Also, the Wiede-
mann-Franz law that postulates proportionality of the ratio of thermal conductivity
κ to electric conductivity σ with temperature κ/σ ∝ T [46] could be explained.

Accordingly, this theoretical foundation and derived theories are relevant for a much
broader field than just optical properties. With appropriate extensions, they can also
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1.4 The electron-ion collision frequency

be related to plasma transport features, such as the thermal conductivity, questions of
relaxation of non-equilibrium systems, dynamics of magnetized plasmas, the equation
of state, etc. However, concentrating on collective electronic phenomena in this thesis,
we do not branch too deeply, into these fields.

Derived from the assumption that all free electrons contribute to the charge transport
and neglecting quantum mechanical effects such as Pauli blocking and Heisenberg
uncertainty as well as bound states, the Drude model cannot describe semiconduc-
tors and dielectrics correctly and overestimates the dc-conductivity. Only with later
enhancements by Sommerfeld and Bethe [47] and the band model [10], has this
become possible. However, since this thesis primarily covers classical plasmas, i. e. the
non-degenerate electron gas in front of the ionic background, we will not discuss these
extensions here.

The only free parameter in (1.45) is the relaxation time τ = 1/ν which is the damping
time parameter in (1.41). In the following section, we study collisions of the charged
particles as one of the main causes for their damped motion in plasmas.

1.4 The electron-ion collision frequency

Collisions between the charges will be the primary contribution to a loss of momentum
and hence friction in a plasma. Consequently, it seems natural to identify ν = 1/τ
as a collision frequency. Using Kirchhoff’s rule, different physical effects that lead
to damping or relaxation, e. g. electron-electron and electron-ion collisions, can be
collected additively here: ν = νei + νee. In normal gases which are composed primarily
of neutral particles, close encounters between them are dominant. In contrast, the slowly
decreasing nature of Coulomb interaction already leads to a considerable number of
distant collisions for charged particles and results in strong deflection. They outweigh
the importance of close encounters by far [48]. Normally, every particle in a plasma
experiences a large number of such far collisions at every instant in time. If all these
led to deflection into the same direction, these would have an enormous effect on all
trajectories. In reality, due to the random character of the collisions their directions
will cancel out. However, they lead to a transfer of momentum and energy between the
collision partners that significantly influences the macroscopic transport and optical
properties.

The problem of determining ν in a broad parameter range of density and temperature
with inclusion of different physical effects has kept scientists busy already since publi-
cation of the model. In the collision term of the Boltzmann equation, L. D. Landau
applies the Rutherford scattering cross section and an effective collision frequency
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that depends on particle velocity v [11, 49]

St f = −νei(v)δf (1.46)

with

νei(v) = nion · v · σ(Rutherford)ei = 4πZe4nel
m2

elv
3 L (1.47)

and the so-called Coulomb logarithm

L =
∫ χmax

χmin

dχ
χ

= ln χmax

χmin
(1.48)

which is an integral from minimal to maximal deflection angle χ. The integration limits
can be defined intuitively via the maximum and minimum collision parameter. Here,
Heisenberg’s uncertainty and Pauli blocking have to be mentioned for near and
Debye screening for distant encounters. Using similar arguments, Spitzer gives the
dc-conductivity as [48, 50]

σ(dc) = 4
√
π

π3/2

(4πε0)2(kBT )3/2

√
mele2

nel
nion
· L (Spitzer)−1

, (1.49)

L (Spitzer) = 1
2 ln 3

2Γ−3 . (1.50)

In this model,

τ = τ90◦ = m2v3

8πnionZ2e4L (Spitzer) (1.51)

is defined as the cumulative 90◦ deflection time [48, 51]. When including screening ef-
fects, the collision integral can also be given with better-than-logarithmic precision [11,
52, 53]. This dynamically screened approach, that avoids divergences for large im-
pact parameters, is called Lenard-Balescu approximation. Including higher-order
self-energy diagrams, Gould and DeWitt give a collision integral that also avoids
the divergence for small impact parameters and treats close collisions in a consistent
fashion [54].

Perel and Eliashberg apply a diagram technique to derive an expression for the
collision frequency in the high-frequency and low-intensity limit [55]. A consistent
treatment of ac-conductivity for frequencies embracing ωpl is given by Dawson and
Oberman [56]. They find an enhanced collision frequency right above ω = ωpl, which is
attributed to excitation of longitudinal plasma modes. Finally, Rand [57] and Silin [58]
extend the kinetic approach under the assumption of a Maxwellian distribution to
arbitrary – in particular also strong – high-frequency fields and find the asymptotic
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1.4 The electron-ion collision frequency

behavior νei(vosc → ∞) ∝ v−3
osc. A derivation of these results based on a Lorentz col-

lision operator is given by Catto and Speziale [59]. Pert [60], Schlessinger and
Wright [61], and Silin and Uryupin [62] give extensions to the strong-field regime
with inclusion of quantum corrections. It is later shown by Decker et al., that Silin’s
low-intensity limit vosc � vtherm corresponds to the results of Dawson and Ober-
man [17]. Furthermore, using particle-in-cell simulations, Decker et al. indicate an –
in contrast to theory – enhanced collision frequency for vosc � vtherm and xosc < λD.
This is interpreted as the result of correlated collision from multiple deflections at the
same scattering center. We will return to this picture in Chapter 7 when analyzing
our simulation results on bulk collision frequency. A similar increase of the collision
frequency due to correlated collisions is found by Brantov et al. using test-particle
simulations [63] for beam-like particle configurations and anisotropic velocity distribu-
tions.

A reduced Inverse Bremsstrahlung absorption is found by Langdon [64] as the result
of a non-Maxwellian electron velocity distribution function already for Zv2

osc & v2
therm.

For small electron temperatures, electron-ion collisions are preferred to those with high
electron velocities. This prevents the velocity distribution function from relaxing into
its equilibrium shape and finally suppresses collisions. The effect is already present
before nonlinearities as studied by Silin become evident for vosc � vtherm. The results
of Langdon are successfully verified by Jones and Lee using Monte Carlo simula-
tions [65]. Using the Langdon distribution function, Pfalzner [66] finds – in contrast
to Silin and Catto – an increase of the collision frequency below vosc/vtherm ≈ 0.1. For
higher intensities, νei decreases for vosc � vtherm as in the other theories.

Using a ballistic model, Mulser and Saemann study the electron-ion collision fre-
quency in laser-plasma interaction and stress that for νei ≈ ωlaser the widely used laser
cycle average is not applicable and a time-dependent theory of collisional absorption has
to replace the time-averaging [67]. Comparisons of different approaches to the collision
frequency are given in [68].

Numerical results for moderate and strongly coupled systems Γ & 1 were first derived by
Cauble and Rozmus [69]. They include spatial distribution functions from hypernet-
ted chain (HNC) calculations [70, 71] to model the spatial structure of strongly coupled
systems into the theory.

Founded on a rigorous generalized linear response theory for the non-equilibrium many-
particle system, Röpke, Wierling, Reinholz, et al. [72–77] propose a quantum sta-
tistical approach for the electron-ion collision frequency. Electron-electron collisions
can be accounted for by including higher moments in terms of a renormalization fac-
tor [77]. Interpolation expressions for the static conductivity are also derived [78–80].
The quantum statistical approach can be shown to lead to a generalized Drude ex-
pression where the collision frequency itself becomes a frequency-dependent complex
quantity νei ≡ νei(ω) ∈ C, see [81] for details, [82–84] for an extensive derivation, and
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[85, 86] for the algebraic connection and numerical comparison to the originally used
kinetic description. With this modification the – now frequency-dependent – collision
frequency can be shown to fulfill the usual sum rules for the dielectric function. In
this framework it is calculated with inclusion of dynamic screening and strong collisions
via a statically screened T-matrix summation using a diagram technique [4, 87, 88]
through a Gould-DeWitt approach [89, 90]. Comparisons of the quantum statistical
approach for different pseudopotentials [83, 91, 92] and with molecular dynamics sim-
ulations for the collision frequency and the structure factor [93–95] are available. An
approach of including dynamical screening into the full T-Matrix by Bornath et al.
shows algebraic difficulties and is restricted to first order in the screened potential [96].
Moll et al. include a second-order Born approximation into the theory and find a
plateau in the Inverse Bremsstrahlung heating rate when considering its dependence on
the Debye screening length λD for weak fields [97]. This is absent in the case of strong
external fields.

Theories for partially ionized plasmas with inclusion of bound-free transitions are also
available [7, 98, 99].

A quantum kinetic approach that is also valid for strong fields is given by Kremp,
Bornath, Bonitz, Schlanges, and Hilse [100, 101] and shown to be in compliance
with molecular dynamics simulations [102, 103], e. g. by Pfalzner and Gibbon [104].
Grinenko and Gericke split contributions of weak and strong collisions [105]. Ex-
ploiting similarities of the strong-collision term to stopping-power calculations, they find
agreement with analytical and simulation results of Hilse et al. [103]. Additionally in-
cluding an ion-ion structure factor from HNC calculations, Schlanges et al. show an
enhanced electron-ion collision frequency for strong coupling Γ & 3 [106, 107].

Based on a quantum-mechanical dielectric model in the framework of a quantum-
Vlasov theory, Kull and Plagne [108] provide an expression for the strong-field
scaling of the Coulomb logarithm and find agreement with the findings of Schlanges
et al. as well as a connection to the classically obtained results of Dawson and
Decker. Furthermore, applying wave-packet scattering via solution of the time-
dependent Schrödinger equation with inclusion of multi-photon effects, Kull et al.
also find enhanced scattering rates due to correlated collisions in the strong-field regime
[109–111]. The obtained energy spectra are found to be comparable to those of above-
threshold ionization.

Experimental data for validation of the many different models and approaches is still
patchy. For example, Kim et al. perform measurements of dc-conductivity via THz
pump-probe reflectivity experiment on aluminum [112]. A similar technique is applied
by Widmann et al. who study the ac-conductivity of gold by means of reflectivity
measurements [113]. Measurements on reflectivity of shock-compressed xenon could be
fitted to theory by Reinholz, Zaporozhets, et al. through modifications to the antic-
ipated shock front density profile [84, 114–122]. The resistivity of a titanium/aluminum
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vapor discharge is evaluated by Renaudin et al. [123]. Mostovych et al. report data
on Inverse Bremsstrahlung absorption and the Coulomb logarithm for strongly cou-
pled, optically thin aluminum plasmas [124]. This overview gives an only very short
and incomplete excerpt from the current state of experiments. More detailed reviews
and extensive data tables were for example compiled by Benage [125] and Clérouin
et al. [126].

Most of the theories listed above are limited to regimes of either weak coupling (Γ . 1)
or weak external fields (vosc � vtherm) for hydrogen-like matter. The experimental data,
though, concentrates on higher-Z elements, such as aluminum, titanium, xenon, gold –
mostly in bulk state, i. e. for high Γ. Despite first attempts, such as [127], these still
cannot be described by closed theories. This is also due to the fact that experimental
conditions in the high-Γ regime are difficult to control and cannot be easily matched by
theory.

These restrictions can be overcome to a certain extent using molecular dynamics simula-
tions, which are in principle not limited to a specific range of the coupling parameter or
field strength. However, published results on molecular dynamics simulations for the col-
lision frequency in correlated media are scarce. Often, the data obtained by Pfalzner
andGibbon [104] via classical molecular dynamics with a soft core Coulomb potential
is used as reference. In addition, also Hilse et al. [103], Reinholz et al. [94] and Mo-
rozov et al. [95] report on own simulation results for comparison with their theories.
They include quantum effects into their simulations by using pseudo-potentials instead
of the pure Coulomb interaction. As an alternative, Filinov, Bonitz, et al. propose
path integral Monte Carlo methods to consistently treat uncertainty effects [128–130].
Another approach for inclusion of quantum effects into computer simulations is the
wave packet molecular dynamics method as for example used by Zwicknagel and
Pschiwul [131]. Classical pseudo-potential molecular dynamics simulations were also
performed by Raitza et al. for studying collective effects in finite nano-plasmas [132–
140]. In particular, they observe plasmon resonance shifts and a complex mode structure
inside metallic nanoclusters.

1.5 Scope of this work

This work aims at gaining new insight into the collisional behavior of warm dense
bulk matter and on collective effects in nano-plasmas. The density, temperature, laser
wavelength and intensity regions relevant to this work are indicated in Figures 1.1
and 1.2 as green and brown areas.

In particular, simulation experiments given by Raitza et al. in [134–136] on electronic
resonances in metallic nano-clusters were limited to systems with up to Nel = Nion =
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1,000 electrons and ions. In Chapter 6, we extend these studies – with respect to particle
number – to 300 times larger systems. While confirming the previous results for small
systems, we find a much more complex resonance structure for the larger clusters. This
is analyzed by means of a new spatially resolved diagnostic. Being able to step towards
these large systems, we start closing the gap between nano-scale and bulk matter.

Following the work of Pfalzner [104] and Hilse [103], the bulk collision frequency
is evaluated using classical molecular dynamics simulations for a hydrogen-like plasma
in Chapter 7. Quantum effects are accounted for via inclusion of the Kelbg pseudo-
potential. Primarily, we are interested in the combined high-field and strong coupling,
regime – a scenario which is well within reach of present day FEL facilities, but which
has only scarcely been covered theoretically.

To solve the underlying N -body problem for both applications, we utilize the highly-
parallel Barnes-Hut tree code that has been previously developed at Jülich Super-
computing Centre, but which was significantly extended with respect to functionality,
versatility, and scalability in the course of preparing this thesis – Chapters 4 and 5.
With the new developments presented here, the simulation code now offers

• excellent scaling on hundred thousands of processors,
• the possibility to simulate systems with > 109 particles,
• the option to virtually extend the simulation region to infinity by means of accu-

rate periodic boundary conditions.

These features are prerequisites for the envisaged applications. To align these devel-
opments and their implications with large-scale particle simulations, Chapters 2 and 3
summarize the N -body problem, several algorithms for dealing with it and finally con-
centrate on multipole approaches as the methods of choice in this thesis.
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Besides the real-world experiment, the most straightforward approach for studying the
dynamical behavior of physical systems is their simulation, e. g. on computer systems.
Here, using a direct one-to-one correspondence of physical to simulation objects, their
evolution in time and space can be studied by immediate inspection of bodies or phe-
nomena in the computer-generated data.

While this idea of mapping the real world and all its details to simulation objects would
be the most realistic and hence most favorable approach, it is in general not feasible
due to the actual complexity of nature itself. Instead, a mathematical model has to be
constructed, that reduces reality to manageable systems. Details that are not necessary
for describing the effects to be studied are omitted. Others are simplified by casting
them into mathematical expressions that can finally be examined and evaluated in a
closed form. In the first part of this chapter, we will describe the fundamental concepts,
principles, and limits that are foundations for every particle-based computer simulation
experiment. Subsequently, different approaches for solving the N -body problem arising
in such experiments are discussed. Concentrating on multipole algorithms, we finally
lay the foundations for the simulations performed within this work.

2.1 Molecular dynamics from basic principles

Within this work, the dynamic properties of Coulomb plasmas are examined. These
consist of differently charged particles in gaseous, fluid or bulk state. They can be
treated in computer simulations by means of either a macroscopic continuum-mechanical
approach using hydrodynamics codes or with a microscopic picture on the level of
individual (pseudo-) particles.

Since it is intended to study the effects of individual Coulomb collisions on optical
and transport properties in strongly correlated media here, the latter method has been
chosen. It deals with particle collisions in a direct, ab initio fashion without the need
for any ad hoc approximations or reliance on theory for computing transport proper-
ties. Furthermore, the individual particles that can also be interpreted as Lagrangian
discretization nodes of the real particle density. Thus, they are able to reproduce arbi-
trary density contrasts. Accordingly, simulating a set of colliding particles surrounded
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by vacuum is much easier with particle methods than with the continuum-mechanical
hydrodynamics method.

As stated in Section 1.1, we will concentrate on the non-relativistic case, where the
general Hamilton (total energy) function for a system of N particles can be written
as [141]

H ({~p1(t) . . . ~pN(t)}, {~q1(t) . . . ~qN(t)}, t)
= T ({~p1(t) . . . ~pN(t)}) + U ({~q1(t) . . . ~qN(t)}, t)

=
N∑
i=1

|~pi(t)|2
2mi(t)

+ 1
2

N∑
i=1

Qi · Φ (~qi, {~q1(t) . . . ~qN(t)}, t) . (2.1)

With the canonical particle coordinates ~qi(t) and momenta ~pi(t), their charge Qi, the
kinetic energy T and the system’s potential energy U , the dynamics of a physical system
can be deduced by evaluating the Hamilton equations. They connect momenta and
positions via

d
dt~qi(t) = ∂H

∂~pi(t)
= ~pi(t)

mi(t)
(2.2)

and

d
dt~pi(t) = − ∂H

∂~qi(t)
= −Qi∇~qΦ (~q, {~q1(t) . . . ~qN(t)}, t)

∣∣∣∣∣
~q=~qi(t)

≡ ~F (~qi(t), {~q1(t) . . . ~qN(t)}, t) . (2.3)

For readability the explicit time dependence of particle coordinates and momenta will be
omitted in the following. Furthermore, the particle masses are assumed to be constant
over time, i. e. d

dtmi(t) ≡ 0. In addition, the canonical coordinates ~qi are identified as
the usual spatial positions ~ri, and charges Qi are printed as qi. Then, (2.2) and (2.3)
can be recast into Newton’s law

mi · ~ai = ~F (~ri, {~r1 . . . ~rN}, t) = −qi · ∇~rΦ ({~r1 . . . ~rN}, t)
∣∣∣∣∣
~r=~ri(t)

(2.4)

with

~ai = d2

dt2~ri , (2.5)

which is the basis for any classical molecular dynamics (MD) simulation. Provided, the
forces ~F (~ri, {~r1 . . . ~rN}, t) on each particle can be determined, (2.5) can be used with
a simple time discretization scheme to compute the individual particle trajectories as
outlined in Section 2.2. However, the set of N coupled second-order partial differential
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equations (2.4) and (2.5) that governs the dynamics of the complete system already
points to several shortcomings of all microscopic, particle-based simulation techniques.

First of all for macroscopic objects with N ∝ 1023 particles, the amount of necessary
storage for particle coordinates, velocities, and other properties vastly exceeds the ca-
pabilities of any available computer system. This will be discussed in Section 2.3.

Furthermore, since the forces ~Fi ≡ ~F (~ri, {~r1 . . . ~rN}, t) in general depend on all coor-
dinates, their determination is a global problem as soon as the interaction law has a
long-range character. Then, for every particle all other particles have to be considered
during the force computation and the amount of work required grows quadratically with
the size of the simulated system. Without significant technical advances, though, com-
puting power can at most grow linearly with the amount of resources invested. Hence,
there is a point where going to even larger computers would not allow us to noticeably
increase system size. Then, building more powerful computers would not make any
sense from the economical point of view. This very fundamental problem and some
solution approaches will be topic of Section 2.4.

2.2 Numerical considerations – mathematics

2.2.1 Time discretization and general molecular dynamics

As already mentioned, solving the set of N coupled second-order differential equa-
tions (2.5) does not pose a fundamental problem as soon as the accelerations, i. e. the
forces, are known. Usually, the particle velocity ~vi is introduced as an auxiliary variable
to yield

d
dt~ri = ~vi ,

d
dt~vi =

~F (~ri, {~r1 . . . ~rN})
mi

,

(2.6)

where the explicit time dependence has been dropped. This set of 2N coupled dif-
ferential equations of first order can be solved by discretization of the time variable.
Therefore, differentiation with respect to time is replaced by a difference quotient

d
dtx(t) ≈ x(t)− x(t−∆t)

∆t (2.7)

and after some reordering (2.6) reads
~ri(t) = ~ri(t−∆t) + ~vi(t) ·∆t , (2.8)

~vi(t) = ~vi(t−∆t) +
~Fi(t)
mi

·∆t , (2.9)
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Algorithm 2.1 Generic molecular dynamics scheme
t← 0
call Initialize_Particles(~r1...N ,~v1...N)
while t < tend do

t← t+ ∆t
call Compute_Forces(~F1...N)
call Update_Velocities(~v1...N)
call Diagnostics()
call Update_Positions(~r1...N)

end while

which is the Euler integration with the discrete timestep ∆t. Actually, when apply-
ing (2.7), all positions, velocities and the time variable would have to be renamed since
we are stepping from a continuous exact solution of (2.6) to a discrete and only approx-
imatively correct parameter and variable space. However, as the distinction between
discrete and continuous variables is usually obvious from the context – and in most
cases even would not lead to formal differences – we do not use different notations here.

Again, it has to be emphasized, that (2.8) and (2.9) can be evaluated conveniently in
an iterative scheme as soon as the forces ~Fi(t) are known or can be computed rapidly.
Chapter 2.3 will deal with approaches for this in general and finally, Chapter 3 will
present the method that was employed in this work. It must be noted that in general the
Euler scheme (2.8) and (2.9) is not stable. Thus, other methods are used in practical
applications such as the leap-frog scheme that will be discussed in Section 2.2.2.

Algorithm 2.1 gives a general overview on a very basic molecular dynamics method.
The routine Initialize_Particles() sets up the system configuration of particle po-
sitions and velocities (temperatures). After evaluating the force law (2.4) for every
particle inside Compute_Forces(), the velocity integration (2.9) is used in Up-
date_Velocities(). All physical Diagnostics() are performed before finally com-
puting the new positions with (2.8) in Update_Positions(). This is done to ensure,
that all relevant properties (forces, velocities, positions) are evaluated at the same
instant in time, e. g. when computing kinetic, potential, and total energy in Diag-
nostics(). This iterative scheme is continued until the simulation end time tend is
reached.

2.2.2 Leap-frog integration

The very simple Eulerian time discretization from the previous section is only of
first-order accuracy in time and in general not stable. Naturally, better and higher-
order approaches are available, e. g. Runge-Kutta integrators [142]. These make
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use of the particle trajectory history or – equivalently – evaluation of the force at
intermediate instants in time within a single timestep. This is undesirable since memory
and computing capabilities are limited resources – see Section 2.3.

Although memory efficient Runge-Kutta schemes are available, see e. g. [143], we
restrict ourselves to the leap-frog method that requires only minor modifications to (2.8)
and (2.9) and delivers second-order integration in time [144, 145]. Its pictorial name
results from the fact that positions and velocities are evaluated at different times –
usually, velocity is computed at t±∆t/2. Thus, both variables leap-frog over each other:

~ri(t) = ~ri(t−∆t) + ~vi(t− ∆t/2) ·∆t , (2.10)

~vi(t+ ∆t/2) = ~vi(t− ∆t/2) +
~Fi(t)
mi

·∆t . (2.11)

Being similar to the velocity-Verlet scheme [146] and thus Verlet integration [147],
this method is time-reversible and symplectic. Especially the latter feature is essen-
tial for molecular dynamics simulations, since it is equivalent to energy conservation.
Furthermore, provided ∆t ≤ 2/ω and constant, it is stable for oscillatory motion with
angular frequency ω [144]. It is worth noting that with staggered-grid approaches [148]
very similar half-step methods are used for spatial discretization in grid-based contin-
uum calculations.

Naturally, the particular choice of time parameters in (2.11) requires special care in the
Diagnostics() routine in Algorithm 2.1. For obtaining positions and velocities at the
same instant in time, for the velocities one half step has to be performed backwards.
The respective expression can be derived as the average of previous and current value:

~vi(t) = 1
2 (~vi(t− ∆t/2) + ~vi(t+ ∆t/2)) (2.12)

= ~vi(t+ ∆t/2)−
~Fi(t)
mi

· ∆t
2 . (2.13)

When calling Diagnostics() in Algorithm 2.1, ~vi(t+∆t/2) as well as ~Fi(t) are available.
Thus, no necessary information is missing for computing dynamic properties at every
full timestep t.

2.2.3 Simulation timestep

As already indicated in the previous section, the choice of timestep is not totally ar-
bitrary. For example, for preserving stability in harmonic problems with the leap-frog
integrator, a constant timestep ∆t ≤ 2/ω has to be chosen. Clearly, with the characteris-
tic system frequencies ωpl and ωlaser and particle velocities, several additional constraints
for ∆t arise.
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Due to the mass ratio mp ≈ 1836mel between protons and electrons, ion dynamics is
significantly slower than electron movement. Consequently, it is sufficient to consider
the electronic system to find an upper limit for ∆t.

For resolving resonant movement in the external field, ∆t� 2/ωlaser and for the collective
plasmon resonance, ∆t� 2/ωpl are required. Based upon the discretization (2.7) in (2.6),
further constraints can be derived:

∆t ≤ ∆~r
~v

, (2.14)

∆t ≤ m
∆~v
~F

(2.15)

with appropriate upper limits for ∆~r and ∆~v as well as estimates for the particle’s
velocities and forces. The division and inequalities have to be interpreted component-
wise or using an appropriate vector norm. All of them have to be fulfilled simultaneously
by the timestep ∆t that is finally chosen.

It seems natural to estimate the particle velocity in (2.14) to v ≈ vtherm. The maximum
velocity update in (2.15) can then be constrained with the average (thermal) velocity,
e. g. ∆v ≤ vtherm/10. A reliable choice for the maximum position update can be based on
considerations about preventing too close encounters. Therefore, we do not allow the
particles to pass the average interparticle separation aee in a single timestep by setting
∆r ≤ aee

10 . An upper limit for the force can be guaranteed by using a Plummer/soft
core interaction potential

Φ(Plummer)(r) = 1
4πε0

· q√
r2 + α2

(2.16)

instead of the Coulomb interaction (1.27). Originally used to describe globular clus-
ters in theoretical astrophysics [149], this form of regularization has already proved its
applicability in molecular dynamics simulations, for example in in calculations on the
electron-ion collision frequency in warm dense matter [104]. The cutoff parameter α
can be used as closest interaction distance between two particles. To treat classical
Coulomb collisions correctly, it should be chosen smaller thank the classical distance
of minimum approach

α < bmin = qelqion
µei · v2

rel
with µei = melmion

mel +mion
(2.17)

and the particles’ relative velocity vrel.

In an external oscillating field, besides the thermal velocity vtherm, the electron quiver
velocity vosc also plays an an important role. It requires for another set of constraints
to be constructed to the given upper limits for ∆t in full analogy to those where vtherm
is involved.
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Of course, these constraints on ∆t are more or less empirical. Their validity has to be
checked continually during each simulation for example by observing conserved quanti-
ties such as linear and angular momentum and total energy.

With the numerical foundation from this section, a framework for classical molecular
dynamics simulations can be built. However, there are further, technical constraints
to be considered. These primarily affect the size of any system to be simulated due
to limited memory and computing time resources. The according consequences for
molecular dynamics simulations will be drawn in the next section.

2.3 Technical constraints – computers

Macroscopic systems consist of O(1023) particles. The amount of storage needed to
represent them can be estimated as

8 byte/variable ·
(
3 coordinates/particle + 3 momenta/particle

)
· 1× 1023 particles

= 48× 1023 byte
= 4.8× 1012 Tbyte ,

(2.18)

vastly exceeds the capacities of any conventional computer system in present and (near)
future. Recently, the global data storage that was available in the year 2007 has been
estimated to 2.95 × 1020 byte [150]. Even though this number already includes all
non-volatile storage – even ancient analog material – this is far less than the estimate
in (2.18). Questions of rapid access to such storage as needed for a dynamic simulation
are not even covered.

Due to technical and physical constraints, this situation will not change dramatically
with future technologies. Even if it was possible to store one variable inside a hypotheti-
cal memory unit by making use of some atomic property, the pure physical dimensions of
the memory without the necessary wiring, connection, stabilizing structure, etc. would
have to be six times larger than the simulated system itself as for every particle at least
the coordinates and momenta have to be stored.

Clearly, a direct one-to-one particle-based simulation of macroscopic systems is and will
be impossible. Consequently, the number of particles has to be reduced either by intro-
ducing pseudo-particles with effective physical properties or by down-scaling the system
via decreased particle number N and simulation volume V while keeping densities N/V
and other relevant properties constant. Obviously, both approaches further reduce the
simulated physics towards a simpler model. Pseudo-particles mask fine-grained struc-
ture and prevent the particle-particle interactions from being treated correctly. How-
ever, the reduction of system size also creates artifacts. First, with decreasing V , its
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ratio to the simulation region’s surface area A ∝ V 2/3 grows:

A

V
∝ 1
V 1/3

−→∞ for V → 0 . (2.19)

Accordingly, surface effects start to dominate in finite-sized systems. Second, very small
particle numbers N render a study collective or resonance phenomena of the electronic
subsystem in a plasma difficult. Consequently, the number of particles in a simulation
should be as large as possible.

2.4 The N -body problem

Unfortunately, besides the memory limit already discussed, there is another constraint
on the particle number N . In (2.4), the force ~F (~ri, {~r1 . . . ~rN}, t) onto each individual
particle is in general a function of the full set of 3N particle coordinates {~r1 . . . ~rN}
of all other particles, which makes its computation extremely costly. For example, for
particles interacting via the Coulomb potential (1.27) and experiencing some general
external potential

Φ (~r, {~r1 . . . ~rN}) =
N∑
i=1

qi
4πε0

1
|~r − ~ri|

+ Φext (~r) , (2.20)

a total of N−1 distances has to be evaluated per particle. Accordingly, for each particle
the force

~F (~ri, {~r1 . . . ~rN}, t) = −qi · ∇~rΦ ({~r1 . . . ~rN}, t)
∣∣∣∣∣
~r=~ri(t)

(2.21)

= qi
4πε0

∑
j 6=i

qj
~ri − ~rj
|~ri − ~rj|3

+ ~Fext (~ri, t) (2.22)

requires the evaluation of N − 1 distances per particle. Hence, in total O(N2) interac-
tions have to be evaluated.

Furthermore, in addition to (2.4) and (2.5), initial conditions

~ri(t = t0) = ~r
(0)
i ,

d
dt~ri(t = t0) = ~̇r

(0)
i

(2.23)

have to be given for uniqueness of the solution. They are usually given by the definition
of the system that is to be simulated. The question of finding a global solution to the
6N coupled partial differential equations (2.4) and (2.5) with the 6N initial conditions
(2.23) is considered as the N-body problem.
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2.4 The N-body problem

2.4.1 Direct summation

The most straightforward way of numerically solving the N -body problem (2.4, 2.5,
2.23) involves the direct computation of all N − 1 terms in (2.22) for each of the N
particles. As shown above, this requires O(N2) operations, rendering the direct method
impractical on today’s computers for moderate particle numbers N > 10,000, where
already > 108 pairwise interactions are involved.

However, apart from round-off errors due to limited machine precision, the direct
method gives exact results for all forces in the considered system. Furthermore, a
data-parallel implementation is trivial by distributing equal chunks of the particle list
across all available processors and passing them to the next neighbor in a round-robin
scheme. These features make this method a handy tool for generating "exact" data for
test runs with small particle numbers N , or when evaluating (2.22) for a subset of M
among the N particles, leading to O(M ·N) scaling of the necessary computational ef-
fort, which is feasible for few test cases. However, since the trajectories of all N system
particles are needed for meaningful physical studies, this approach is not followed here.

2.4.2 Grid-based approaches

One popular way to get around the enormous computational effort of the direct evalu-
ation of (2.22) already dates back to the 1960s and is known as Particle-In-Cell (PIC)
approach. Tutorial introductions can be found in [16, 51, 144, 151]. Here, we will only
give a very short overview on the method. It is based on the idea of resolving the
computational domain using a sufficiently fine grid and projecting charges and currents
onto grid nodes at position ~Rk via

%
(
~Rk

)
=
∑
i

qi · S
(
~ri − ~Rk

)
(2.24)

~j
(
~Rk

)
=
∑
i

qi~vi · S
(
~ri − ~Rk

)
(2.25)

with the weighting function S (~r) and the particle velocity ~vi = ~pi
mi

. Then, Maxwell’s
equations (1.22) and (1.23) are solved on the grid, which can efficiently be done in
parallel using finite difference schemes, (parallel) Fourier transform methods (PFFT)
or a multigrid approach. Detailed overviews on these and related methods can for
example be found in [142, 145, 152–156] and references therein. The resulting fields
and potentials can be interpolated back to the actual particle positions using the same
weighting function S(~r) where they are used for the individual velocity and position
updates.

Normally, such PIC methods treat the simulated particles as discrete elements of the
single-particle distribution function f(~r,~v) rather than real physical entities. Thus, they
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2 The N-body problem

essentially solve the Vlasov equation

∂f

∂t
+ ~v · ∂f

∂~r
+ ~F (~r,~v) · ∂f

∂~v
= 0 (2.26)

and the weighting function S (~r) represents the shape of the considered particle clouds.

Despite the PIC approach’s significant advantage of treating not only particle evolution
but also propagation of the electromagnetic fields, i. e. including radiation from an
external source and the self-consistent internal electrodynamics, by means of a full
solution of Maxwell’s equations, it still has some drawbacks.

Firstly, grid resolution is a difficult question. To sufficiently resolve rapidly evolving
systems, e. g. laser-driven particle acceleration, a wide dynamic range in particle densi-
ties from vacuum to bulk matter with steep density gradients has to be covered. This
usually needs adaptive grid methods that make the numerics very complex - mathe-
matically as well as from the algorithmic and implementation side. Furthermore, with
grid-based techniques it is difficult to handle systems with open boundaries correspond-
ing to Dirichlet boundary conditions at infinity. For finiteness, usually

Φ (|~r| → ∞) = 0 (2.27)

is required which corresponds to conventions from electrodynamics [34, 35]. While in
bulk simulations on laser-plasma interactions this does not impose a limitation, finite-
sized systems can be studied more conveniently using real physical particles directly
instead of using a grid-based method.

Furthermore, the use of pseudo-particles (clouds and/or grid nodes) for the interaction
of nearby partners precludes the exact treatment of particle collisions. Since this is one
of the main objectives of this work, the models here will be constructed around a grid-
free multipole-based technique of evaluating (2.22) for large particle ensembles. Two
closely related representatives of this class of algorithm will be discussed in the following
section. Concepts from both methods will be applied in the following chapters.

2.4.3 Multipole-based approaches

As already mentioned, the use of pseudo-particles for reducing the effective number of
interactions to be computed prevents individual close encounters for being sufficiently
resolved. However, it can be observed that interactions of particles with distant particle
groups do not have to be resolved down to the level of individual interactions. Instead,
the particle group can be considered as a single, spatially expanded charge distribution.
Due to its large distance, the particle only experiences the far-field expansion of this
particle group’s electric field. This approach is frequently used in standard electrody-
namics, see e. g. [34, 35], and has found its way into computer simulations in the early
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2.4 The N-body problem

1980’s [157–159]. A textbook overview on multipole methods in physics is available
in [160]. In this section, we will briefly summarize Cartesian and spherical multipole
expansions and describe their particular value for evaluating forces in large sets of parti-
cles with long-range interaction. The mathematical foundation for the expressions given
here can be found in any textbook on advanced calculus or mathematical methods for
physicists, such as [161, 162]. The Taylor series

f(x) =
∞∑
n=0

(x− a)n
n! · dn

dxnf(x)
∣∣∣∣∣
x=a

(2.28)

for a function f : R→ R which is infinitely differentiable in the neighborhood of a can
be generalized to functions f : Rd → R with ~r,~a ∈ Rd and superscripts denoting vector
components as

f(~r) =
∞∑

n1=0
· · ·

∞∑
nd=0

(r(1) − a(1))n1 · · · (r(d) − a(d))nd
n1! · · ·nd!

· ∂n1+...+nd

(∂x(1))n1 · · · (∂x(d))nd f(x)
∣∣∣∣∣
~x=~a

.

(2.29)

Considering for now just the first three terms and d = 3, i. e. real physical space, this
can be cast into the more compact but identical expression

f(~r) = f(~a) + (~r − ~a)T∇f(~a) + 1
2(~r − ~a)TH̄f (~a)(~r − ~a) + . . . (2.30)

with the gradient ∇f(~a) and the Hessian H̄f (~a) of f in ~a. Using (2.30), an expansion
for the inverse distance can then be written as

1
|~r − ~a|

= 1
|~a|

+ ~aT

|~a|3
~r + 1

2 ~r
T
(

3~a⊗ ~a
|~a|5

− Ī

|~a|3

)
~r + . . . (2.31)

with the identity matrix Ī and the dyadic (outer) product ~a⊗~a = ~a~aT, see Figure 2.1.

To compute the electrical field of a particle cloud onto a remote observer at ~a, we
consider a subset ofM particles at positions ~ri=1...M around the origin and with Φext ≡ 0.
Insertion of (2.31) into the potential sum (2.20) leads to

Φ(~a) = 1
4πε0

 1
|~a|
·
(
M∑
i=1

qi

)
︸ ︷︷ ︸
Q:monopole-

+ 1
|~a|3
· ~aT

(
M∑
i=1

qi · ~ri
)

︸ ︷︷ ︸
~Q: dipole-

+ 1
2

1
|~a|5
· ~aT

(
M∑
i=1

qi ·
[
~ri ⊗ ~ri − |~r|2

])
︸ ︷︷ ︸

Q̄: quadrupole-moment

~a+ . . .

 (2.32)

= 1
4πε0

 1
|~a|
·Q+ 1

|~a|3
· ~aT ~Q+ 1

2
1
|~a|5
· ~aTQ̄~a+ . . .

 , (2.33)
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which is a series in |~ri||~a| . Via (2.33), the multipole moments are defined by

Q =
M∑
i=1

qi (2.34)

~Q =
M∑
i=1

qi · ~ri (2.35)

Q̄ =
M∑
i=1

qi ·
[
~ri ⊗ ~ri − |~r|2

]
. (2.36)

For the above transformation, the property ~rT(~a⊗~a) = (~rT~a)~aT of the dyadic product
and commutativity of the scalar product ~rT~a = ~aT~r has been used to rewrite the
quadrupole contribution. The multipole series converges if

|~ri| < |~a| for all i = 1, . . . ,M . (2.37)
Hence, the potential of a cloud of charges around the origin can be approximated for
large distance from the origin by truncating (2.33) after the first few terms. For func-
tions f : R → Rm, (2.29) can be applied component-wise which makes it immediately
applicable for derivation of an expansion for the electric field:

− ~E(~a) = ∇Φ(~a) = ~a ·Q
|~a|3

+ 3~a(~a · ~Q)− |~a|2 ~Q
|~a|5

+ Q̄~a

|~a|5
− 5

2
~aTQ̄~a

|~a|7
~a+ . . . . (2.38)

Again, the expression shows convergence for ~a→∞.

A more rigorous approach that is formally equivalent to (2.33) can be given by expanding
the inverse distance in spherical harmonics [35]

1
|~r − ~a|

=
∞∑
l=0

|~a|l

|~r|l+1Pl(cosχ) (2.39)

where Pl(x) are Legendre polynomials. An extensive overview on their definition and
properties used in the following can be found in any textbook on special functions as
well as in the standard mathematical tables, such as [163]. The parameter χ is the
angle enclosed by ~a and ~r. Here, since −1 ≤ Pl(x) ≤ 1, convergence is possible for
|~a| < |~r|, which restricts the validity of the expansion to a region outside the particle
cloud. Using the standard addition theorem for Legendre polynomials

Pl(cosχ) =
l∑

m=−l

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)P |m|l (cosα) eim(φ−β) (2.40)

and the definition of spherical harmonics

Ylm(θ,φ) =

√√√√2l + 1
4π

(l −m)!
(l +m)! P

m
l (cos θ) eimφ, m ≥ 0 (2.41)

Yl,−|m|(θ,φ) = (−1)l−mY ∗l|m|(θ,φ) (2.42)

32



2.4 The N-body problem

(a) The Coulomb potential that results
from a charge at position ~r as seen
by an observer at ~a is determined by

1
|~r−~a| .

(b) By performing a multipole expansion
for a cloud of charges qi at positions
~ri, the potential at ~a outside the cloud
can be approximated.

Figure 2.1: Using the expansion (2.31), an approximation for the inverse distance 1
|~r−~a|

is found. This can be used to perform an expansion for the potential Φ(~a),
experienced by a remote observer at ~a due to a particle cloud around the
origin O.

with the associated Legendre polynomials Pm
l (x), (2.39) takes the form

1
|~r − ~a|

=
∞∑
l=0

l∑
m=−l

4π
2l + 1

al

rl+1Y
∗
lm(α,β)Ylm(θ,φ) (2.43)

with the spherical coordinates ~r = (r, θ, φ) and ~a = (a, α, β). A short but complete
proof can be found in [164]. Insertion of (2.43) into (2.20) now yields an expression for
the potential expanded in spherical harmonics Ylm(θ,φ):

Φ(~r = (r,θ,φ),{~ri=1...N = (ai,αi,βi)})

= 1
4πε0

N∑
i=1

qi
∞∑
l=0

l∑
m=−l

4π
2l + 1

al

rl+1Y
∗
lm(α,β)Ylm(θ,φ) . (2.44)

After summing over i, this reads

Φ(~r) = 1
4πε0

∞∑
l=0

l∑
m=−l

4π
2l + 1 qlm

Ylm(θ, φ)
rl+1 (2.45)
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2 The N-body problem

(a) Direct Summation:
O(N2)

(b) Tree code:
O(N logN)

(c) Fast Multipole Method:
O(N)

Figure 2.2: Particle-based N -body methods: When determining the force on the lower
left red particle, different numbers of interactions have to be evaluated
depending on the approximation method.

with appropriate coefficients qlm, which take the role of the multipole coefficients here.
They can be found in detail in standard literature on electrodynamics, e. g. [34, 35].
Naturally, the corresponding expression for the electrical field and thus for the force
from a particle cloud on a distant particle can be derived in full analogy to (2.38). Be-
ing formally a rather closed expression even for higher orders, the spherical expansion
is much more compact in comparison to the analogous Cartesian expressions. On the
other hand, it contains transcendental functions that demand numerically sophisticated
algorithms for their stable evaluation. Furthermore, the shifting rules for multipole
expansions needed later – which can for now be seen as algorithms for combining ex-
pansions around different centers – are significantly simpler in the Cartesian case. The
relevance and consequences of these properties are studied in more detail in Chapter 3,
which describes a tree algorithm for the N -body problem that is based on the Cartesian
expansion. In this work, the spherical expansion plays an important role in the algo-
rithm’s extension for periodic boundary conditions that demands only few evaluations,
but high orders of multipoles, see Chapter 4.

Clearly, the multipole moments contain information on the internal charge distribution
of the particle group under consideration. By including them, e. g. via (2.38), into the
force sum, a large number of individual interactions with far particles can be performed
by just one interaction with a multipole expansion. Now the idea of multipole-based
summation techniques is to efficiently group particles into clusters and to decide whether
to interact either with them or with their constituents using a simple distance-based
criterion. In this respect, the multipole-approach is also a pseudo-particle method. How-
ever, in contrast to PIC or grid-based techniques, pseudo-particles or particle groups are
only employed for far-field interactions, while near-neighbors are still treated directly.

34



2.4 The N-body problem

Figure 2.2 shows – in addition to the direct O(N2) sum – the interaction scheme
of two multipole-based approaches for evaluating (2.22). In the Barnes-Hut tree
method [158], only far particles are incorporated into clusters as interaction partners.
This algorithm can be shown to be able to scale as O(N logN) with particle number
N , see [160]. In the Fast Multipole Method (FMM) [159], close particles form an addi-
tional local cluster, allowing cluster-cluster interactions between objects with different
multipole expansions to be performed. Then, the result for the local cluster is shifted
down to its constituent particles. This approach can scale as O(N), compare [156, 165,
166].

While being limited in multipole order when constructing an implementation, as al-
ready mentioned, the Cartesian expansion that is generally used in the Barnes-Hut
algorithm leads to simpler multipole shifting rules. These are necessary tools in the
tree algorithm and will be described in Section 3.1.2. In addition, the algorithm can be
easily adapted to implement additional interaction laws such as regularized kernels or
even a nearest-neighbor search needed for Smooth Particle Hydrodynamics (SPH). In
Section 5.3 we will describe some of the applications that have evolved as side projects
during the development of the code that has been used and extended in this work and
propose possible directions of development in future. The flexibility to add both al-
gorithm and physics modules straightforwardly makes the parallel Barnes-Hut tree
code the tool of choice for the envisaged simulations – outweighing the more favorable
O(N) scaling of the Fast Multipole Method.

To get a more detailed insight into the algorithm, its advantages and latest develop-
ments, the next chapter will summarize the main features of the Barnes-Hut method,
the Warren & Salmon hashed-oct-tree approach that is used for parallelization, and
the implementation PEPC that is developed at Jülich Supercomputing Centre. Al-
ternative implementations and recently proposed modifications to the algorithm will
also be covered. Recent developments and improvements to the algorithm that were
developed as part of this work will be described in the subsequent Chapters 4 and 5.

35





3 The parallel Barnes-Hut tree code
PEPC

The inventors of the tree algorithm, Josh Barnes and Piet Hut, proposed their idea
of a hierarchical tree code in the mid-1980s for efficiently simulating gravitational N -
body systems [158]. Together with the Fast Multipole Method, published independently
slightly later in [159], it has since revolutionized long-range N -body simulations for
scientists across a wide range of disciplines, ranging from gravitational problems and
plasma physics to fluid dynamics.

Both methods reduce the number of direct particle-particle interactions through a sys-
tematic use of multipole expansions as described in Section 2.4.3. Especially when
simulating dynamical systems, there is no use in computing the potential and force to
higher accuracy than the error which the time discretization scheme for integrating the
equations of motion imposes anyway. In these cases, multipole methods are able to
significantly speed up particle simulations with many millions of physical objects.

Since the first publication of the Barnes-Hut tree method in 1986, a large number
of implementations for many different applications have evolved. Among them is the
Pretty Efficient Parallel Coulomb Solver (PEPC) [167], which has been developed at
Jülich Supercomputing Centre over the past decade [168–175]. PEPC is the MPI-
parallelized successor to treemd [104, 160, 176], a non-parallel implementation of the
original serial algorithm with several additions for bulk plasma simulations and vector
computers. PEPC represents a whole family of codes for a multitude of applications
under the umbrella of a common tree code framework and has been used as the basis for
all further developments and improvements that were implemented within this thesis.

This chapter will describe the basic concepts of the Barnes-Hut algorithm and its
parallelization via the Warren and Salmon hashed-oct-tree method at the example
of the original PEPC implementation. An overview of alternative implementations and
algorithm variations is given in Section 3.4 before Chapters 4 and 5 describe the new
developments on periodic boundary conditions and overall code scalability that have
been conducted within this work.
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3 The parallel Barnes-Hut tree code PEPC

3.1 The Barnes-Hut algorithm

The fundamental idea behind any tree code in this context is to map spatial position
information onto a data structure that can be easily analyzed and exploited to classify
proximity between points in space. While not being limited in the actual dimension of
space, we restrict ourselves to the physically most natural 3D-version in the following.
This leads to the construction of an oct-tree. However, for clarity in all figures here,
the 2D-equivalent – a quad-tree – will be shown.

The algorithm itself basically consists of three steps:

1. Tree construction
2. Computation of multipole properties for tree nodes
3. Tree traversal with

• Identification of interaction partners
• Evaluation of the force law for each identified interaction

These will be described in the following.

3.1.1 Tree construction

The tree construction is depicted for an illustrative set of particles in Figure 3.1, where
the tree is drawn in a bottom-up fashion. Starting from the root node, the simulation
region is recursively subdivided into boxes of decreasing size until each particle resides
inside its own box. These boxes are assigned to nodes within the tree data structure:
Particles correspond to leaf nodes, while particle groups, i. e. larger boxes that contain
several sub-boxes are referred to as twig nodes. The root node contains all particles
within the simulation region. For now, the leaves only contain individual particles
although this is not required as we will see later. The tree level is counted from root
(level = 0) towards the leaves (level > 0).

Of course, particles and particle groups that are situated close to each other physically
are also closely related in the tree through sharing common ancestor nodes. Hence,
they are part of the same particle cluster on a lower tree level.

3.1.2 Computation of multipole properties

To compute interactions between particles and particle clusters by means of their mul-
tipole expansion via (2.33) and (2.38), the multipole moments Q, ~Q, Q̄, . . . have to be
calculated for all tree nodes that are potential interaction partners. For sake of sim-
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Tree Level 0
Root Node

Tree Level 1

Tree Level 2

Tree Level 3

Tree Level 4
Leaf Nodes

Figure 3.1: For a two-dimensional example, a quad-tree is constructed by recursively
subdividing space into boxes with decreasing size from the root node to-
wards the tree leaves containing individual particles.
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parent cluster
Q̂, ~̂Q, ˆ̄Q

subcluster 1
Q1, ~Q1, Q̄1

subcluster 2
Q2, ~Q2, Q̄2

subcluster 3
Q3, ~Q3, Q̄3

Figure 3.2: Collection of subcluster multipole moments for computing the parent clus-
ter’s properties.

plicity we restrict ourselves to at most quadrupole order, thus truncating the expansion
after the term containing Q̄. The consequences of this choice will be discussed later.

An efficient way of computing all relevant multipole moments is to perform a node-wise
expansion around the respective particle cluster’s center of all Nc subclusters

~̂rcoc =
∑Nc
i=1Qi · ~rcoc,i∑Nc

i=1Qi

. (3.1)

Subscript indices denote particle numbers inside the cluster, variables with circumflex
accent, such as ~̂rcoc are parent node properties (here its center-of-charge), those without
belong to subclusters as shown in Figure 3.2. Defining the shift vector

~rs,i = ~̂rcoc − ~rcoc,i (3.2)

between the center-of-charge ~rcoc,i of a sub-cluster and that of its parent node ~̂rcoc, the
multipole moments of the parent node can be computed via

Q̂ =
Nc∑
i=1

Qi , (3.3)

~̂Q =
Nc∑
i=1

[
~Qi −Qi · ~rs,i

]
, (3.4)

ˆ̄Q =
Nc∑
i=1

[
Q̄i − ~rs,i ⊗ ~Qi − (~rs,i ⊗ ~Qi)T + (~rs,i ⊗ ~rs,i)Qi

]
. (3.5)
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Algorithm 3.1 Serial tree traversal
for all particle in particle_list do

todo_stack.clear()
node ← root . traversal for the particle starts at root node
repeat

if (mac_ok(particle, node)) and not (particle ∈ node) then . MAC eval.
. interaction allowed

call Interact(particle, node)
. due to interacting with this node

. its children do not have to be considered
else

. the MAC requires the node to be further resolved
todo_stack.push(node.children) . proceed vertically in tree

end if
until is_invalid(node ← todo_stack.pop())

. todo_stack is empty for this particle – its traversal is complete
end for

A detailed derivation is available in [160]. It makes use of the additivity of multipole
expansions when performed with respect to same expansion center. All multipole mo-
ments are shifted to the common center-of-charge ~̂rcoc and summed up to obtain the
parent properties. Individual particles can be treated as clusters with vanishing dipole
and quadrupole moments and center-of-charge localized at their own position, so the
multipole expansion of all nodes on any tree level can be computed via a bottom-up
sweep through the tree. Starting from the leaf nodes with their trivial multipole ex-
pansion, the nodes are visited level-by-level while combining properties of the previous
(higher) level clusters until finally the root node is reached. Instead of gathering all
particles for every cluster individually and having to perform O(n_treelevels · N)
operations, this technique reduces the amount of work to O(n_treenodes) ∝ O(N).

3.1.3 Tree traversal and multipole acceptance criterion

Finally, after constructing the tree and dressing all tree nodes with their multipole
coefficients, interaction partners have to be identified and the actual interactions have
to be computed. This is performed during the next step, where – starting from the
root node – for every particle at position ~R, a depth-first traversal through the tree is
performed. A pseudo-code overview is given in Algorithm 3.1. During this traversal,
a series of decisions are made whether the particle may interact with the node that
is currently under consideration and the traversal into the particular tree branch can
be terminated. Otherwise, it is further resolved into its constituent nodes. A natural
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ϑ

B1

d1

s1

B2

d2

s2
B3

d3

s3

Figure 3.3: Barnes-Hut multipole acceptance criterion (MAC)

basis for deciding this is to compare the cluster distance to its size. Far clusters may be
larger, while nearer particle groups have to be smaller to yield a consistently accurate
evaluation of (2.38). Obviously, the particle itself may not be part of the considered
cloud, since this would violate (2.37) and would include unphysical self-interaction of
particles.

The decision for accepting interaction with a tree node at a certain tree level is called
Multipole Acceptance Criterion (MAC). Among the many flavors of different MACs, the
classical Barnes-Hut-MAC is the simplest and most well-established [158, 160, 177,
178]. In this MAC, for every tree node j touched during the traversal its center-of-charge
distance from the particle

dj = |~R− ~rcoc,j| (3.6)

is determined. If the ratio of its box size sj to dj is larger than a fixed parameter ϑ > 0,
interaction with the cluster is not allowed and it has to be further resolved. If

sj
dj
≤ ϑ , (3.7)

interaction is allowed and the cluster’s substructure can be ignored. Figure 3.3 depicts
the multipole acceptance criterion for a randomly chosen particle from the previous 2D
example in Figure 3.1. While box B1 is far enough and does not have to be resolved,
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B2 is of the same size s2 = s1, but lies closer to the particle. It does not fulfill (3.7)
and has to be decomposed. One of its components, B3 is significantly smaller s3 = s2/2

and is an acceptable partner for interaction. Thus, this MAC can be interpreted as a
cone with opening angle ϑ. Only nodes that fit into this cone are acceptable interaction
partners.

Setting ϑ = 0 corresponds to resolving all nodes up to leaf level, which results in
performing the unfavorable O(N2) sum again in a roundabout fashion. It can be shown
that values of ϑ > 0 lead to O(logN) interactions per particle and hence O(N logN)
interactions in total, see [160, 177] for a detailed argumentation.

Besides the ratio of cluster distance and size being large enough, one also has to ensure
that the particle itself is not contained in the box. This can arise if the MAC parameter
is smaller than the diagonal of a unit box, i. e. ϑ < 1/

√
2 ≈ 0.707 in 2D, or ϑ < 1/

√
3 ≈

0.577 in 3D. These are worst-case estimates for the center-of-charge and the particle
lying in opposite corners of the box. However, to prevent ϑ from – for prevention of
self-interactions – having to be smaller than necessary, it is favorable to avoid using
the MAC for particle exclusion. Instead, forcing to resolve the particle’s parent boxes
independent of the MAC is expedient.

In addition to the very simple yet effective Barnes-Hut MAC, several other variants
are possible [172, 178]

• the minimum distance MAC, where dj is computed as nearest distance to the
cluster instead as distance to its center-of-charge,

• the bmax MAC, that replaces the box size sj with the maximum distance of the
cluster’s center-of-charge from the box edges,

• the ~E-field MAC, that estimates and limits the relative error that results from
inclusion of a cluster on a lower level,

to name but a few. The bmax and ~E-field MAC include an additional data dependency
to limit the actually introduced error from each individual interaction. This is favorable
to derive usable expressions for the precision of the multipole approximation. In [172]
these multipole acceptance criteria have been compared with respect to performance
and achieved precision. Further details can also be found in [178], which is the standard
work on evaluation of different multipole acceptance criteria.

During the tree traversal, the MAC is evaluated for every cluster, visited for the par-
ticle. Hence, it has to be significantly cheaper from the computational side than the
actual interaction to prevent it from dominating the total traversal time. Therefore, we
adhere to the very simple Barnes-Hut MAC (3.7), which can efficiently be evaluated
by just comparing d2

j · ϑ2 with s2
j . It does not require any square roots, divisions or

computationally more demanding expressions. Furthermore, s2
j can be pre-tabulated

as a function of the tree level and the distance d2
j is re-used during the interaction

computation if the tree node was accepted.
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A rigorous first-principles error estimation for the Barnes-Hut tree code with gener-
alized algebraic kernels of the form

Φ(r) = 1
(r2 + σ2)τ , τ > 0 (3.8)

has been derived by speck [179]. It is particularly useful for the bmax multipole accep-
tance criterion

b

d
< ϑ , (3.9)

where b is the maximum distance between a cluster’s center-of-charge ~rcoc and all its
members and d the distance between the point of observation and ~rcoc. In [179] it is
shown that the error ετ(p+1) due to truncating a multipole expansion of (3.8) after p
terms is bounded by

|ετ(p+1)| < D2τ+1(p + 1) · M̄(0)

(d− b)2τ ·
(

b

d− b

)p+1

(3.10)

with a polynomial D2τ+1(p + 1) of order 2τ + 1 in p + 1. The coefficient M̄(0) =∑
i∈cluster |qi| is the total absolute charge of the cluster. Clearly, the truncation error is

smaller for higher orders p of terms included in the multipole expansion. In addition,
convergence is only guaranteed for b < d−b, i. e. if the evaluation position is not situated
inside a ball that tightly encloses the particle group. Further details, interpretation,
and connection to previous work by Salmon can be found in [179].

As (3.10) is more of academic than practical use and we will utilize the standard
Barnes-Hut multipole acceptance criterion (3.7), Figure 3.4 gives an empirical er-
ror estimate. Here, the root-mean-square and maximum relative errors

∆relA =
∣∣∣∣Apepc − Adirect

Adirect

∣∣∣∣ (3.11)

are given for the field, potential and total potential energy for different MAC parameters
ϑ. The example system considered consists of 12,960 positively and negatively charged
ions in a melting NaCl crystal with open boundaries. It is taken from the ScaFaCoS
testsuite [156, 180]. Values found by PEPC are compared the results of the direct N2

sum.

We will not track individual trajectories or rare events in our applications in Chapters 6
and 7 and are primarily interested in statistical measures such as heating rate and time-
averaged collective movement of particles. Accordingly, a maximum relative force and
potential error of O(1 %) is expected to be tolerable. As seen in the figure, this fixes
the value of the MAC parameter to ϑ = 0.3.
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(a) Maximum and root-mean-square relative errors for poten-
tial, field and total potential energy compared between
PEPC and the direct N2 sum.

(b) Example system

Figure 3.4: Precision comparison for different multipole acceptance parameters ϑ. The
example system considered for this comparisons is a 12,960 particles open-
boundary extract of a melting NaCl crystal that includes some density
variations. Reference values were produced using the direct N2 sum for
the N -body problem. For ϑ = 0.0 the relative errors reach 10−14 which
is expected as the numerical limit for double precision computations and
thus not included in the figure.

3.2 The parallel tree algorithm

Clearly, the hierarchical ordering of particle clusters with nodes inside a quad- or oct-tree
is an algorithmically attractive technique for tackling the problem of finding interaction
partners of appropriate size and distance. However, an efficient data-parallel implemen-
tation of algorithms that incorporate hierarchical data structures is difficult without an
extensive redesign.

One approach of parallelization – the Hashed Oct-Tree (HOT) with the Latency Hiding
Tree Traversal was proposed by Warren and Salmon [181]. It keeps the original
structure intact and requires only few changes and additions. In its original implemen-
tation, it requires the following modifications to the data structure and algorithm:

• Allocation of a globally unique key to all nodes in the tree
• Storage of the tree node properties, such as multipole properties and administra-

tive data in a hash table structure with O(1) access complexity
• Domain decomposition using a space-filling curve
• Tree construction:
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3 The parallel Barnes-Hut tree code PEPC

– Construction of local trees
– Identification and exchange of branch nodes as

entry points for remote processors
– Construction of the global tree

• Latency-hiding tree traversal

The Warren and Salmon HOT is the most well-known distributed memory paral-
lelism extension for the Barnes-Hut algorithm. However, today several variations and
other algorithmic modifications do exist. An overview will be given in Section 3.4 after
describing the HOT parallelization steps as implemented in PEPC. These are the basis
for the code’s further evolution.

3.2.1 Allocation of globally unique keys

Firstly, every particle is assigned a unique key. To do this, the physical simulation
region Bsim = [xmin . . . xmax] × [ymin . . . ymax] × [zmin . . . zmax] is mapped to a Bint =
[0 . . . 221−1]× [0 . . . 221−1]× [0 . . . 221−1] cube of integer coordinates via the operation

Bint 3 ~̄r :=


221 − 1 xmax − xmin

ymax − ymin
zmax − zmin


~r −

 xmin
ymin
zmin




, (3.12)

where the right hand side has to be evaluated component-wise and ~r ∈ Bsim. Now,
the components of ~̄r = (x̄.ȳ,z̄) are integer numbers that can for example be bitwise
interleaved to generate a unique key

k(~̄r) = 23·21 +
20∑
i=0

(
22 · x̄i + 21 · ȳi + 20 · z̄i

)
· 23i (3.13)

= (1 x21y21z21 . . . x2y2z2 x1y1z1 x0y0z0 )2 (3.14)
= (1 k21 . . . k2 k1 k0 )8 (3.15)

where subscript indices i denote bits counted from the LSB (least significant bit, i = 0)
to the MSB (most significant bit, i = 20). Subscripts 2 and 8 indicate the used number
system – binary or octal, respectively. The leading bit at position 63 is called the
placeholder bit and ensures that each key has a defined length even if the most significant
bits of the coordinates are zero. This will be necessary when also assigning keys to tree
nodes later. Conveniently, k is a 64-bit number which nicely fits into an 8-byte integer.
It is unique as long as the fractional part that has to be discarded in (3.12) is smaller than
the nearest inter-particle distance. This restricts the approach to a spatial resolution
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of 1
221 ≈ 0.47 × 10−7 in units of the box lengths in every spatial direction. Particles

that are closer to each other are assigned the same key during tree construction. To
avoid this, one of them is usually slightly displaced in case of a key collision. By using
longer keys, an even higher density contrast can be modeled. However, this increases
the necessary storage and often prevents use of standard routines for key manipulation.
It is also possible to simply limit the maximum tree level by reinterpreting tree leaves
as particle containers instead of single particles. It must be stressed that this restriction
on a minimum particle distance only applies to the tree construction. The maximum
density contrast among physical particles is not limited at all and as indicated, the
issues that arise during the tree construction phase can be mitigated straightforwardly.

Obviously, in (3.14) every group of three bits represents an additional level of refinement
with respect to spatial resolution. Therefore, it is natural to use an octal notation as in
(3.15). Furthermore, keys that differ only in the rightmost octal digit are all contained
in a common coarser box and after truncating the rightmost digit, a unique key for this
parent box is immediately found. Here, the placeholder bit comes into play: If it did
not exist, a key on a higher level starting with many zeros could not be distinguished
from a lower-level key. The placeholder bit guarantees all keys to start with a set bit.
The extraction of the level for a given key is simply determined by the position of the
leading non-zero digit:

level(k) =
⌊

log8(k)
3

⌋
= bit_size(k)− leadz(k)− 1

3 . (3.16)

In the right version, the functions bit_size(k) and leadz(k) return the total number of
bits and the number of leading zeroes in k. Since both functions are part of the Fortran
standard and can usually be evaluated rapidly with underlying machine instructions,
this version is significantly faster than the cumbersome floating point evaluation of the
logarithm.

This technique of addressing nodes inside the tree is shown in Figure 3.5. In this
2D quad-tree example, every tree level corresponds to two bits and the placeholder
bit has been omitted. For finding all children of a box, its key has to be augmented
by two additional bits identifying the child number. To get the parent key for some
child, the last two bits of its key have to be removed. A sibling can be found by
increasing/decreasing the last two bits by one without carry or borrow to/from the
next level’s bits. Thus, a set of simple rules for an up-/downwards and horizontal
traversal is available and – although not explicitly constructed until now – the keys
already define the topology of the tree. Since the keys are unique to particles and tree
nodes, they present a convenient way of addressing and accessing information about
them across processor boundaries, which will be used in the domain decomposition,
parallel tree construction, and traversal.
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Figure 3.5: Connection between binary keys of parent and children boxes. In the 2D
example, two bits correspond to each tree level; the placeholder bit has
been omitted.

3.2.2 Hash table

Directly using the 63-bit key as a memory address would require 264−1 storage locations
which were mostly empty, since Bint is in general sparsely occupied. This is why, a
mapping function from key- to address space has to be used. To still ensure O(1)
access time to node data for a given key k, the very simple hashing function

address(k) = k & (000000000000000077777)8 , (3.17)

where the ampersand represents a bitwise and() operation, is used [181]. It simply
extracts the trailing part of the key. By construction, this part is mostly different
for nearby particles, since they only share common leading parts of their key. Hence,
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(3.17) allows for more or less uniform utilization of the available memory. Naturally,
this also depends on the actual particle configuration. Especially very regular setups,
i. e. particles on a regular grid will have identical trailing bits in their address. Such a
configuration can stimulate collisions and larger gaps in the hash table. Another cause
for duplicate storage addresses is the insertion of remote tree nodes into the local hash
table during the later parallel traversal. These collisions can be resolved by introducing
simple linked lists or other collision resolution mechanisms [182].

3.2.3 Domain decomposition

In addition to the global addressing feature described above, the method of assigning a
unique key to each particle is a convenient starting point for the domain decomposition,
i. e. a solution to the problem how the particles are distributed across the processors.
This map S : R3 → N defines a continuous 1D line, reaching every relevant point in
space, i. e. a space-filling curve [183, 184].

Now, the curve can simply be cut into portions of equal length, that will be processed
by the nodes of a distributed-memory compute cluster. Therefore, the keys have to
be globally sorted and repartitioned. This can efficiently be done, for example using a
parallel radix sort. An early implementation used an adaptive modification of a parallel
regular sampling method [185, 186]. This proved to prevent efficient scaling beyond
P = 4,096 processors [187], where the sampling resolution eventually becomes insuf-
ficient without using excessive statistics, and is also handicapped by O(P 2) collective
operations during the merge step. For this reason it has been replaced by a more sophis-
ticated parallel sort library developed at TU Chemnitz. This uses a parallel extension
of a most-significant-digit-first radix sort [182]. Details on the algorithm as well as com-
parisons of the new parallel sorting by partitioning to the previous approach are given
in [173].

For sake of efficiency during the later parallel tree traversal, it is important, that the
space-filling curve conserves locality as much as possible. That is, particles that are close
to each other in real physical space should also lie nearby on S. Then, the processors get
particle chunks with a large volume-to-surface ratio, which is favorable during the tree
traversal since more interaction partners will already be locally available, minimizing
the amount of multipole information to be communicated.

The construction rule (3.14) for k(~r) and hence S defines the so-called Morton- or Z-
curve, due to its characteristic form – Figure 3.6a. Naturally, there are many other ways
of constructing S. For example, the Hilbert-curve [183, 184, 189], Figure 3.6b, shows
much better locality since with increasing level all distances scale continuously and large
jumps as in the Z-curve do not appear. In [188], both curves were implemented and
analyzed. Using a domain decomposition and load balancing algorithm for the particle

49



3 The parallel Barnes-Hut tree code PEPC

(a) The Morton- or Z-curve contains
jumps of constant length even for in-
creasing level.

(b) For the Hilbert-curve, all internal dis-
tances scale continuously with increas-
ing level.

Figure 3.6: Spacefilling curves can be used to map the real physical space into con-
tinuous 1D space for conveniently addressing particles and tree nodes as
well as for a locality-preserving distribution of the particles across multiple
processors, from [188].

keys that prefers to cut the space-filling curve at the boundaries of low-level boxes can
avoid processor domains to lie across large jumps in the Z-curve to some extent. This
leads to roughly equal performance using either curve.

Figure 3.7 picks up the previous example from Figure 3.1 again and uses a Z-curve
for distributing the particles across three processors, which is shown by different colors
here.

3.2.4 Parallel tree construction

As depicted by different colors in Figure 3.7, after performing the domain decomposition
every processor possesses its own subset of particles that is as spatially compact as
possible. After exchanging the boundary particles of the local domain with – with
respect to the space-filling curve – both neighboring processors, all local particles are
inserted into a local tree, that is built as far as possible towards the root until remote
particles or multipole information is needed for continuation.
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Tree Level 0
Root Node

Tree Level 1

Tree Level 2

Tree Level 3

Tree Level 4
Leaf Nodes

Figure 3.7: Parallel tree construction
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In general, not all local particles belong to a single common branch per processor, since
the local domain usually does not have the ideal shape of a low-level box. Hence, every
processor can own several unconnected local trees. This is for example the case for the
red processor in Figure 3.7 that owns three local trees up to their respective root nodes.
The union of the local tree nodes on every processor covers the whole local domain
and by adding a single lower-level node, remote domains would be touched. The roots
of these local trees are considered as branch nodes and have to be globally exchanged
between all processors. They are shown as colored boxes in Figure 3.7. Then, every
processor can construct its global tree using fill nodes (black-colored twigs above the
colored branch nodes in Figure 3.7) until reaching the common global root node of the
complete simulation domain.

Now, the global tree up to the branch nodes is identical on all processors, while the local
trees below the branch nodes only reside on their respective individual owner. This is
the starting point for the parallel tree traversal.

3.2.5 Parallel tree traversal

The tree traversal in the parallel implementation of the Barnes-Hut tree code is in
principle identical to the serial single-processor approach, see Algorithm 3.2. Again, for
every particle, a depth-first search through the tree is performed to identify interaction
partners by applying a multipole acceptance criterion.

However, during the traversal, it might become necessary to further resolve a branch
node for which children information is locally unavailable. Here, the traversal at this
particular node cannot be continued until the child data is available. In [181] it was
suggested to put the unavailable node onto a request_list and to defer the traversal for
the current particle. The traversal can be continued with another particle accordingly
until no more traversal steps are possible for all local particles. Then, the request lists
are exchanged globally and the requests are answered. Afterwards, the traversal can
continue with the deferred particles. Using this technique, the exchange of tree nodes
can be performed with global message exchange operations that reduce latency signifi-
cantly in comparison to asynchronously sending individual requests and waiting for the
answers. When interaction partners are identified during the traversal, they are put
onto an interaction_list. The actual force computation is performed after the traver-
sal to prevent the expensive floating point computations from leading to asynchronous
execution of the traversal on the different ranks.

52



3.2 The parallel tree algorithm

Algorithm 3.2 Parallel tree traversal: Latency Hiding Scheme
for all particle in particle_list do

particle.interaction_list.clear()
particle.defer_list.clear()
particle.defer_list.add(root) . traversals for all particles start at the root node

end for

repeat
request_list.clear()

for all particle in particle_list do
todo_stack.clear()
todo_stack.push(particle.defer_list.pop_all())
while is_invalid(node ← todo_stack.pop()) do

if not is_locally_available(node) then
request_list.add(node) . node data has to be requested
particle.defer_list.add(node) . it will be processed again later

else
. MAC evaluation

if (mac_ok(particle, node)) and not (particle ∈ node) then
particle.interaction_list.add(node) . interaction allowed

. node’s children do not have to be considered
else

. the MAC requires the node to be further resolved
todo_stack.push(node.children) . proceed vertically in tree

end if
end if

end while
. todo_stack is empty for this particle

end for
. all particle’s traversals have been done as far as possible

. must exchange tree node data to proceed with deferred nodes
call Send_Requests(request_list)
call Answer_Incoming_Requests()
call Receive_Answers()

until is_empty(particle_list[1 : N ].defer_list))

call Process_Interactions(particle_list[1 : N ].interaction_list)
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3.3 Performance analysis for the pure-MPI tree code
PEPC

In its original version, the tree code part implementation of PEPC strictly followed the
ideas that were presented in Sections 3.1 and 3.2 and was thus capable of efficiently com-
puting interactions between larger numbers of particles on distributed memory compute
clusters with few thousand processors. However, despite its name, PEPC was not only
a tree code for Coulomb interaction but also contained different application frontends
for diverse open-boundary systems governed by long-range potentials, for example in
astrophysical and fluid dynamics contexts. Thus, when analyzing the code’s scalability
and performance, not only the tree code kernel but also the frontend applications have
to be considered. Table 3.1 lists the main parts of the complete molecular dynamics
suite PEPC and their respective algorithmic scaling in terms of number of processors P
and particles N . The construction of interaction lists is given there independently from
the actual force evaluation, since it was implemented separately as in Algorithm 3.2.
This way of implementation was expected to further reduce latency during the tree
traversal by deferring the expensive floating point operations to afterwards and to ex-
ploit vectorization of the force computation.

Concerning scaling in total particle number N , the tree traversal is the dominating part.
On the one hand, this is important since otherwise the administrative overhead would

Frontend Initialization of particle properties
~ri, ~pi, qi,mi

O(N/P )

Kernel Key construction
~ri → ~̄ri = (x̄i, ȳi, z̄i)→ ki

O(N/P )

Key sorting
k1, k2, ...kN

O(N/P logN)

Domain decomposition/ Key repartioning
k1, ..kn; kn+1, ..k2n; ...; kN−n...kN

O(N/P )

Construction of local trees and branch node exchange O(P logN/P )
Construction of global tree O(logP )
Construction of interaction lists (tree traversal) O(N/P logN)
Evaluation of forces and potentials O(N/P logN)

Frontend Particle trajectory integration O(N/P )

Table 3.1: Algorithmic scaling of major routines in PEPC including a generic MD
frontend. The symbols N and P represent the total number of particles
and processors respectively, and n = N/P . From [186].
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Figure 3.8: Strong scaling of pure-MPI PEPC on the IBM Blue Gene/P machine
JUGENE for homogeneous setups, from [175].

dominate, which would render the method very inefficient. On the other hand, this is
the part of the code where a large communication bottleneck is expected. Furthermore,
it is noticeable that the branch node exchange, which scales as O(P logN/P ) might
also play an important role for large numbers of processors – an issue, we will return
to in the later Section 5.2.

Figure 3.8 shows the strong scaling of the original code for a homogeneous setup on an
IBM Blue Gene/P supercomputer. Being capable to perform simulations with up to
100 million particles, the code made efficient use of up to 8,192 processors as long as
N/P was large enough. However, further speedup beyond these 8,192 MPI ranks was
not obtained [175].

The reduction of efficiency for the smaller setups and moderate processor numbers can
be explained by the weak scaling limit, e. g. for 500,000 particles on 256 processors there
are only N/P ≈ 2,000 particles per processor which is not enough work in comparison
to the administrative overhead due to parallelization. For the larger configurations,
scaling already saturates for N/P > 10,000. The reason for this can be seen in Fig-
ure 3.9, which gives separate timings for the different algorithmic steps. Apparently,
the tree traversal and force computation have not yet reached their weak scaling limit
since both runtimes decrease linearly with the number of processors. Instead, the tree
construction is beginning to dominate. Further analysis shows that due to the large
number of processors and hence local trees, the average branch node level significantly
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Figure 3.9: Detailed timings for the 3× 107-particle set of Figure 3.8. The four main
steps of PEPC are also shown separately: domain decomposition (step 1),
local and global tree construction (step 2), tree traversal (step 3) and force
summation (step 4), from [175].

shifts towards the leaves. Consequently, their global exchange becomes more important
due to the large amount of data shipped between the processors. Moreover, the global
tree constructed from the branch nodes becomes significantly larger because they are
lying on deeper levels. As this work has to be done by every processor and is not split
across them, the non-parallel part of the algorithm increases with a larger number of
processors. Several strategies were implemented to avoid or at least relocate this effect
towards considerably larger processor numbers – see Section 5.2.

Apart from the branch node issue, weak scaling of the tree traversal was also unsatisfac-
tory, which prevented the code from being used with smaller particle numbers on larger
supercomputer partitions. This particular problem arises from inherent load-balancing
issues between the synchronous communication stages during the traversal. As can be
seen in Figure 3.10, during the alternating traversal and communication stages of a
single complete traversal, load-balancing problems occur. These prevent synchronicity
especially for later stages. Finally, the waiting time for other (slower) processors to start
the global communication starts to dominate. For larger numbers of processors, this
becomes considerably worse, since the slowest among them causes all others to wait.

In PEPC, a sophisticated load-balancing mechanism was included through distributing
unequal-sized particle chunks when performing the domain decomposition. This could
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Figure 3.10: Execution trace of pure-MPI PEPC on 8 processors (one per line, time
is running from left to right). The excerpt only shows one complete tree
traversal, that essentially consists of the traversal itself (green blocks)
and synchronous data exchange (red blocks and black lines). Time is
running form left to right. While the first traversal stage is finished by
the processors rather synchronously, different amount of work after the
first data exchange block leads to long waiting times in subsequent com-
munications. Finally, on almost all processors communication dominates
the traversal. This image was obtained using Vampir and Vampir-
Trace [190].

be achieved by using the number of interactions in the previous timestep as a heuristic
measure for the chunk size instead of the number of particles. Since the particle config-
uration and hence the interaction partners do not change significantly between any two
steps of an MD simulation, this is a good measure for equalizing the amount of work
concerning the force computation. Although this is still connected to the work during
the tree traversal, some randomness remains. An estimate for the necessary amount of
communication and number of non-local nodes to be touched for every single particle
is still missing here, which can be notably different from the number of interactions.
Hence, load balancing for the tree traversal is supported but not guaranteed through
this approach.
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3.4 Other implementations and algorithm variations

As the Barnes-Hut tree code and its derivative algorithms have proven to be very
successful in simulating N -body systems, numerous implementations, variations, and
applications have been published after the original work in 1986 [158]. Historically, the
Barnes-Hut method was not the very first tree algorithm of its kind. Already in 1985,
Appel published a proposal for a binary tree based algorithm where interactions were
performed via the monopole of particle clusters [157]. For astrophysical simulations
where only positive charges (masses) are evident, this already yields good accuracy and
was even shown to scale linearly in the total particle number N [191].

While for later applications, the order of multipoles has increased, the question of the
optimal choice of tree topology is still controversial. Besides the original oct-tree scheme
of the Barnes-Hut approach that is also used in PEPC, kd-trees were utilized and
compared to the original topology [192–194]. In particular, binary trees constructed
by orthogonal recursive bisection (ORB) [194–198] yield much better balanced trees
than the oct-tree method but suffer from other difficulties, e. g. in general higher tree
levels [199]. However, leaving the oct-tree allows for non-uniform cells and hence better
adaptivity [200].

Furthermore, bringing the algorithm closer to the fast multipole method, several at-
tempts were made to include cell-cell interactions. Already the early formulations of
Warren and Salmon was prepared for these [201]. However, an implementation using
the Cartesian expansion with cell-cell interaction is only reported by Dehnen [202] and
later reused [198]. With the addition of an adaptive multipole acceptance criterion even
sublinear scaling in the number of particles N is achieved [203]. A related approach to
cell-cell interactions is the reuse of interaction lists for nearby particles [204, 205] that
significantly reduces the tree traversal time by avoiding very similar traversals to be
performed. The idea of grouping force evaluation points instead of particles was shown
to be efficient if they outnumber the charges in the system [206].

In addition to the adaptive multipole acceptance criterion byDehnen [203], a multitude
of other criteria has been studied and error estimates were given by several groups [172,
177–179, 200, 207, 208], see also Section 3.1.3. Besides these theoretical works on tree
code precision, comparative computations of PIC and tree codes for plasma applications
are also reported by different authors [209, 210].

One important foundation for the tree code’s versatility is its independence of the choice
of interaction kernel. Accordingly, apart from the Coulomb force law it has also been
used for screened Coulomb (Debye-Hückel) potentials [211] or fluid modeling by
means of the vortex particle methods [179, 212–215], for example. By construction, the
tree code even allows to separate the near-field and identify close neighbor particles as
necessary for the Smooth Particle Hydrodynamics (SPH) method [177, 198, 216–220].
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3.4 Other implementations and algorithm variations

Code Parallelization Max. # of compute nodes # particles
strategy distrib. shared mem. ×106

Warren vendor spec. 512 – 17.15 [201, 224–226]
Dubinski MPI 256 – 10 [196]
WDSPH-PT MPI 128 – 10 . . . 1,000 [205]
GADGET MPI 32 – 75 [217]
FLY MPI, one-sided 1,024 – 64 [227]
Parallel Gravity Charm++ 1,024 – 5 [228]
ChaNGa Charm++ 40,960 – 730 [229]
TREE MPI + OpenMP 255 4 10 [209, 230]
PEPC MPI 16,384 – 256 [173, 175]
RCB-tree OpenMP – 24 100 [198]

Table 3.2: Overview on shared- and distributed-memory parallel Barnes-Hut tree
code implementations in chronological order. Variations such as TreePM
are omitted for brevity. Numbers are given as reported in the respective
publications. Fields which are not applicable are marked with a hyphen
"–". PEPC is included in its original version as described in this chapter.

Furthermore, the far-field can also be treated separately which lead to the development
of the Tree-Particle-Mesh (TreePM) method [221–223]. Here, only close encounters are
dealt with via a tree code. Several trees are integrated into a mesh, where Fourier
transform or other grid-based methods are used for determining far-field contributions.
This finally leads to a forest-of-trees approach.

While work on single-processor performance optimization explicitly dedicated to mul-
tipole methods is scarce, see e. g. [231–234], many parallelized implementations have
been published. A non-exhaustive selection is given in Table 3.2. In the early years
of tree code development, efficient vectorization of the traversal played an important
role [192, 204, 212, 235, 236] but soon has lost importance with the advent of large-
scale distributed-memory compute clusters. However, the use of the computing power
of Graphics Processing Units (GPU) provided new impetus to vectorized traversals and
the tree code development. Simpler implementations only offload the force computation
onto the GPU but thus already allow for utilization of GPU clusters since the traversal
is still performed on the CPU, see e. g. [237]. More advanced techniques transfer the
complete tree construction and traversal onto a single GPU [238–240]. Finally, multiple-
walk technologies have been developed that allow the extension of GPU-only codes onto
GPU clusters again [215, 241, 242] and allow for simulations of up to 3.3 billion particles
on 576 GPUs [243].

Driven by applications such as stellar dynamics with high density contrasts, an advanced
dynamic timestepping approach has been developed by Springel [217]. Using prox-
imity information from the tree, it can identify nearby particles, adjust their individual
timestep, e. g. as given in the seminal publication by Aarseth [244], and dynamically
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3 The parallel Barnes-Hut tree code PEPC

update only modified portions of the tree. This allows for significant better resolution
of close collisions or binary systems embedded in large particle clouds.

The use of tree codes in studies on properties of bulk matter leads to the need for periodic
boundary conditions. These are usually implemented using the so-called tabulated
Barnes-Hut-Ewald (tBHE) method [160, 176, 245, 246], see also Section 4.2.3. Finally,
for simulations with Dirichlet or von Neumann boundary conditions, the tree code
based boundary element method has been developed by Christlieb et al. [247].

3.5 Summary

Among the developments listed in the previous section there are numerous promising
approaches for reducing time-to-solution and improving applicability to many special
use cases. As seen in Table 3.2, PEPC in its original implementation as described in
this chapter has already been one of the tree codes with best parallel scalability and
among those with largest particle numbers. However, the solid scaling limit beyond 16 k
processors and memory restrictions that prevent simulations with more than 256 million
particles were already seen to result from conceptual issues. For any progress to be
made, new concepts are necessary at this stage.

Concentrating on simulations of large open and periodic boundary systems in this thesis,
our primary interests with respect to code development are twofold. First, we want to
further improve PEPC’s scalability with respect to numbers of processors as well as its
capability to deal with larger particle systems. To this end we will show in Chapter 5,
that with the new hybrid parallelization developed here efficient scaling of the code
with 2 billion particles on up to 300 k processors can be achieved. This is to the best of
our knowledge the first successful demonstration of a classical Barnes-Hut tree code
on these scales. Secondly, we want to include a new approach for periodic boundary
conditions, which is more precise, reliable and computationally less expensive than the
tBHE approach used before. This will be addressed in Chapter 4.
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4 Periodic boundary conditions

Despite PEPC’s unique capability of efficiently handling configurations consisting of
tremendous numbers of particles as will be demonstrated in Chapter 5, it is still far away
from simulating truly macroscopic systems. As already mentioned when introducing
the general N -body problem in Chapter 2, independent of the chosen algorithm, these
systems can and will not be treatable with today’s or tomorrow’s computing and storage
resources due to the vast amount of O(1023) particles involved. In fact, the present code
with the modifications that will be described in Chapter 5 is able to compute forces
between O(109) particles. This corresponds to a bulk cube with 103 particles per edge,
i. e. a volume of approximately O(1µm3). For overdense plasmas where the external
field only penetrates into the matter with the characteristic skin depth lskin = c/ωpl .
10 nm [16] and a laser focus of 10µm2 this is already sufficient. However, there is also lots
of interesting physics going on in the high-frequency/underdense regime, where matter
is transparent for the laser and the full system volume is penetrated and accordingly
larger volumes have to be studied. In addition, considering open simulation systems
introduces surfaces that are not existing in reality. These have to be eliminated as they
can dominate the system dynamics and modify its properties inadvertently. Hence,
the simulation region has to be increased at least virtually to infinity for such bulk
simulations. This is by default performed in MD simulations using periodic boundary
conditions for particle movement as well as for the field and potential. To this end,
the simulation region is expanded by mirror images of itself into all relevant spatial
directions, leading to an infinite-sized simulation without increasing the actual number
of particles. Finite-size effects and the artificial surfaces that are introduced with open
boundaries and do not have a correspondence in real bulk matter are thus removed.

4.1 Periodic movement constraint

The necessary movement constraint for all particles is trivial. When using a simulation
box with dimensions (0 . . . L(1))× (0 . . . L(2))× (0 . . . L(3)), a simple wraparound via

~r
(k)
i =


~r

(k)
i + L(k) for ~r

(k)
i < 0

~r
(k)
i for 0 ≤ ~r(k)

i ≤ L(k)

~r
(k)
i − L(k) for L(k) <~r

(k)
i

(4.1)
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4 Periodic boundary conditions

for all coordinate indices k and particles i is sufficient. A generalization to non cuboid
box shape is straightforward. Clearly, (4.1) modifies physical variables, such as particle-
particle correlations. Consequently, these have to be evaluated with caution.

4.2 Periodic forces and potential

A periodic extension of forces and potential is not as trivial. Here, (2.20) and (2.22)
are augmented with an additional summation over all image boxes:

Φ (~r, {~r1 . . . ~rN}) =
∑
~n∈Z3

N∑
i=1

qi
4πε0

1
|~r − (~ri + ~n · L)| + Φext (~r) , (4.2)

~F (~ri, {~r1 . . . ~rN}) = qi
4πε0

∑
~n∈Z3

∑
j 6=i if ~n=0

qj
~ri − (~rj + ~n · L)
|~ri − (~rj + ~n · L)|3 + ~Fext (~ri) , (4.3)

where ~n is an index vector for all boxes. For convenience, a 3D cubic simulation region
L = L(1) = L(2) = L(3) is assumed. Again, the generalization to non-cubic and even
non-cuboid box shape and 2D or 1D pseudo-periodicity is straightforward. In this
case, ~n · L has to be written as the vector matrix product of ~n and the matrix that is
constructed from the three lattice basis vectors.

Clearly, the additional sum over ~n cannot be executed directly, since it contains an infi-
nite number of contributions. The effective total number of interactions grows linearly
with the number of included mirror boxes and hence cubic with the effective simula-
tion region size. Furthermore, due to the long-range character ∝ 1/r of the Coulomb
potential, it converges slowly and cannot be truncated arbitrarily. However, simplifi-
cations and transformations for this sum are possible and were implemented to reduce
the computational expense. These are discussed in the following.

4.2.1 Next-neighbor periodicity

The most trivial approach for emulating periodic boundary conditions is to cut the
lattice cell sum in (4.2) and (4.3) after a number of contributions. For example, when
restricting it to |~n| ≤ ncut =

√
3 in the 3D case, the sum only contains B = 27 terms. In

a naïve implementation, this increases the necessary computational work by this factor
B. However, in the tree code algorithm, the complete tree traversal can simply be
performed for every box shift vector individually. Since most neighbor boxes lie farther
away than the furthermost particle inside the central box, most of their interactions will
involve low-level tree nodes. In the Barnes-Hut algorithm, for every particle O(logN)
interactions have to be evaluated. Thus, through increasing the number of cells in the
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4.2 Periodic forces and potential

sum over ~n by a factor B, the total number of interactions scales with O(N log(B ·N)),
since only forces on the N particles in the central box are of interest.

The precision of this approach can be improved by simply increasing ncut, which finally
results in an infinite sum for ncut →∞. Furthermore, due to asymmetry, the resulting
potential and fields are not strictly periodic, which violates conservation of energy and
momentum.

4.2.2 Nearest-image periodicity

The asymmetry that results from next-neighbor periodicity can be circumvented by
using a real-space cutoff

~ri − (~rj + ~n · L) ≤ L , i,j = 1, 2, 3 , (4.4)

that has to be performed component-wise. Figure 4.1 shows this cutoff region for a
sample particle.

With this technique, momentum conservation can be achieved while the potential is
still not periodic due to the incomplete sum. Hence, energy conservation is still vio-
lated. Furthermore, the approach is not conveniently applicable in the Barnes-Hut
algorithm, since the latter relies in particle-multipole instead of particle-particle inter-
actions. For particle clusters, that happen to lie either side of the cutoff limit, some
of their constituents would have to be included, others not. This demands resolving
all tree nodes on the boundary. Since its position varies with every particle under
consideration, all nodes would have to be resolved leading to an O(N2) scaling.

4.2.3 Ewald summation – The tabulated Barnes-Hut-Ewald
technique

The most well-known and probably most-used technique for including periodic boundary
conditions in Coulomb N -body MD-simulations was originally developed by Ewald
for computing crystal lattice energies [248]. It is based on splitting (4.2) into two rapidly
converging series in coordinate and momentum space:

Φ(~r) = Φcs(~r) + Φms(~r) (4.5)
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4 Periodic boundary conditions

Figure 4.1: When using nearest-image periodicity, interaction outside a real-space cut-
off region, here L in every spatial direction (shown as green box for the
red particle), is not allowed. This results in symmetry of included inter-
actions for all particles inside the central simulation cell. Only some of
the included particle-cluster interactions are shown by arrows. The actual
decision for resolving clusters into particles is shown for the central box in
this picture to exaggerate the impression of periodicity. In reality it has
to be performed for the image cells separately.

with

Φcs(~r) =
∑

~n∈Z3

N∑
j=1

qj ·
erfc(α|~r − (~rj + ~n · L)|)
|~r − (~rj + ~n · L)| , (4.6)

Φms(~r) = 1
πL

∑
~h∈Z3\0

N∑
j=1

qj ·
e−

π2|~h|2

α2L2

|~h|2
· cos

(2π
L
~h · (~r − ~rj)

)
. (4.7)

The dimensionless arbitrary parameter α determines the relative convergence rate of
the two series. Typically, α = 2/L is chosen, which ensures both series to converge
equally fast. When truncating the sums over ~n and ~h at ~n,~h > 3

√
3, the last summand

is already smaller than first one by a factor of 10−12, which is sufficient for computations
with limited machine precision. However, due to the vectorial character of the indices,
even when truncating the sums that early, a large number of terms have to be evaluated.
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4.2 Periodic forces and potential

Consequently, an evaluation of (4.5) is not feasible at ~r = ~ri for all particles i =
1 . . . N . It can be avoided by tabulating the contribution of the image-cell particles as
a correction to the classical Coulomb interaction in the form [160, 176, 246]

Φ(~r) = Φ(~r)− ΦCoul(~r)︸ ︷︷ ︸
ΦEwCorr(~r) : tabulated

+ ΦCoul(~r)︸ ︷︷ ︸
treated as usual

. (4.8)

Here, ΦCoul(~r) is the regular Coulomb potential, that can be evaluated with the
usual Barnes-Hut tree code algorithm. The computationally expensive correction
ΦEwCorr(~r) is instead evaluated on a regular equidistant grid that covers the complete
simulation region. Using standard linear interpolation, it is evaluated at the instanta-
neous particle positions ~ri. The electrical field is treated analogously.

This so-called tabulated Barnes-hut-Ewald (tBHE) approach is sufficiently faster
than computing (4.5) and the corresponding expression for the field for every particle
individually. However, the interpolation procedure introduces additional potential and
field errors that undermine the periodic boundary conditions and may compromise
energy conservation. Additionally, with the parameter α and the series (4.6) and (4.7)
that have to be truncated depending on desired precision, the overall convergence and
accuracy are rather difficult to control. Furthermore, although much theoretical work
is already available [249–254], the extension of the Ewald-technique to 2D- and 1D-
periodic systems requires extensive modifications. These extensions are necessary, for
example, to simulate slab and wire geometries.

4.2.4 FMM-approach for periodic boundary conditions

To avoid such restrictions, in this work a parameter-free real-space summation via a
renormalization approach is chosen. Therefore, an elegant approach borrowed from the
fast multipole method [159, 165, 255] is adopted here. It is based on the bipolar ex-
pansion of the inverse distance in terms of Legendre polynomials, already introduced
in (2.43), which can be recast into

1
|~r1 − (~r2 + ~n)| =

∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
k=−j

(−1)j Oml (~r1)Mm+k
l+j (~n)Okj (~r2) (4.9)

with the multipole coefficients

Oml (~r = [r,θ,ϕ]) = rl

(l +m)!Plm(cos θ)e−imϕ (4.10)

and the Taylor coefficients

Mm
l (~r = [r,θ,ϕ]) = (l −m)!

rl+1 Plm(cos θ)eimϕ . (4.11)
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4 Periodic boundary conditions

Figure 4.2: Notation for evaluating the far-field contribution with (4.17). To be able
to reorder the summation, (4.18) has to be respected, which restricts the
application to the red region. The near-field that is to be treated sep-
arately is shown in blue, the original (central) simulation cell as green
square.

The associated Legendre polynomials Plm(x) differ from the previously used definition
by a factor

Plm(x) = (−1)mPm
l (x) , (4.12)

see [163] for details. Often, the Taylor coefficients are also referred to as local expan-
sion since they represent an expansion around a center inside the particle cloud while
the multipole coefficients correspond to an expansion in the cloud’s far-field.

In addition to Oml andMm
l , integral coefficients denoted by ωml and µml , respectively,

will be used in the following. These are sums over the charge-weighted coefficients for
a set of particles with

ωml =
N∑
p=1

qpOml (~rp) µml =
N∑
p=1

qpMm
l (~rp) (4.13)

and hence do not have a coordinate argument. Being connected to the real physical
expansions, they implicitly carry their expansion center, though. Using the FMM op-
erators M2M (4.31), M2L (4.32), and L2L (4.29) that will be introduced later, they can
be manipulated, e. g. shifted to another expansion center or converted from multipole
to Taylor expansion and vice versa. Due to linearity the operators can be applied to
the pristine expansions Oml andMm

l as well as to the integral coefficients ωml and µml .
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4.2 Periodic forces and potential

For the transformations which follow, the order of summation has to be modified. This
requires absolute convergence of the series, which is only guaranteed if

|~n| > |~a1|+ |~a2| . (4.14)

Then, using the notation in Figure 4.2, the lattice (far-field) contribution to the potential
can be written as

Φlat(~R) =
∑
~n∈Z3

N∑
p=1

qp∣∣∣~R− (~rp + ~n)
∣∣∣ (4.15)

=
∑
~n∈Z3

N∑
p=1

qp
∞∑
l=0

l∑
m=−l

∞∑
j=0

j∑
k=−j

(−1)j Oml (~R)Mm+k
l+j (~n)Okj (~rp) (4.16)

=
∞∑
l=0

l∑
m=−l

Oml (~R)
∞∑
j=0

j∑
k=−j

(−1)j
∑
~n∈Z3

Mm+k
l+j (~n)

︸ ︷︷ ︸
Lm+k
l+j

N∑
p=1

qpOkj (~rp)︸ ︷︷ ︸
ωkj︸ ︷︷ ︸

µm,cent
l

. (4.17)

The condition for absolute convergence

|~n| > |~R|+ |~rp| (4.18)

that is required for these transformations can only be guaranteed if all covered image
cells that are indexed by ~n ∈ Z3 lie well-separated from the central one. For example
in the cubic case this means, that they may not share common box edges, as visualized
in Figure 4.3. This concept of well-separatedness is of fundamental importance for
FMM theory [256]. Using the well-separation parameter ws, a measure for the number
of neighbor shells that are excluded from the FMM formalism for the sake of (4.18)
is given. Assuming cubic box shape for now, we will use ws = 1 in the following.
Consequently, the edge length of the near-field region for every box – the blue region
in Figure 4.3 – is 2ws+ 1 = 3. Naturally, other choices ws > 1 are possible to allow for
non-cubic box shapes, but in favor of the simple 3 as near-field edge length, the 2ws+1
will be omitted in the following. Our implementation uses this factor correctly to keep
the formalisms flexibility, but carrying it would render the explanations unnecessarily
clumsy.

The reordering of the summation in (4.17) already indicates the recipe for calculating
the far-field contribution. All geometry-dependent terms are absorbed into the lattice
coefficients

Lm+k
l+j =

∑
~n∈Z3

Mm+k
l+j (~n) . (4.19)
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4 Periodic boundary conditions

Figure 4.3: For the approach to be applicable, (4.18) has to be respected, which re-
stricts it to the red region. The near-field that is to be treated separately
is shown in blue, the original (central) simulation cell as green square.

This was already noted in [159] as a convenient approach of separating geometry param-
eters from particle positions. However, the lattice coefficients still demand evaluation of
an infinite sum, which can be done by an efficient renormalization approach as will be
shown later. Further ingredients are the multipole expansion of the central simulation
box

ωkj =
N∑
p=1

qpOkj (~rp) (4.20)

and the Taylor expansion of all far-field boxes around the simulation box center

µm,centl (0) =
∞∑
j=0

j∑
k=−j

(−1)j Lm+k
l+j ωkj , (4.21)

that is composed of both. Then, the far-field contribution to the potential is given as

Φlat(~R) =
∞∑
l=0

l∑
m=−l

Oml (~R)µm,centl ≈
p∑
l=0

l∑
m=−l

Oml (~R)µm,centl . (4.22)

Computing Lm+k
l+j will be the computationally most demanding term for this technique

since it involves many iterations over long multipole series. However, as it only depends
on all lattice vectors ~n and is independent of any particle positions, it can be completely
pre-calculated at the beginning of the simulation and reused in every timestep or – for
certain special cases such as a cubic simulation region – even be pre-tabulated. The
multipole expansion ωkj and Taylor coefficients µm,centl can be computed once per

68



4.2 Periodic forces and potential

timestep and only (4.22) has to be evaluated for every individual particle. Hence,
this approach shows an algorithmic scaling of O(N · p), where p is the truncation
limit for the infinite sums and hence the maximum multipole order to be included.
Being the only free parameter here, it can be used to trade computational speed and
memory demands against precision. Higher values of p deliver better accuracy, but
demand more storage for the higher-order multipole and lattice coefficients and more
computational effort for evaluating (4.22) and the necessary intermediate expressions
before. However, since the Barnes-Hut tree code already uses low-order multipole
expansions for approximating interactions inside the central cell, the choice of p is
only of secondary relevance. Naturally, p = 2 can be chosen for the evaluation of
the far-field to be consistent with the approximation in the central box. However, the
renormalization approach which is presented in Section 4.2.5 involves iterating over a
series of multipole contributions using the standard FMM operators introduced later.
Since their precision is constrained by the choice of p at least during calculation of the
lattice coefficients, the multipole order has to be higher, e. g. p = 30, which yields more
than 8 digits of precision [257].

The electrical field can be deduced from (4.22) by straightforward differentiation [255],
that yields

− ~E(~R) = ∂

∂ ~R
Φlat(~R) =

∞∑
l=0

l∑
m=−l

[
∂

∂ ~R
Oml (~R)

]
µm,centl (4.23)

and after shifting all coordinates ~r → ~r − ~R

− ~E(~R) =
∞∑
l=0

l∑
m=−l

[
∂

∂ ~R
Oml (~R)

]
~R=0

µm,shiftl . (4.24)

Now, the expression in brackets after differentiation contains terms of the form |~R|l−1

that vanish for ~R = 0 except for l = 1, so we may write

− ~E(~R) =
1∑

m=−1

[
∂

∂ ~R
Om1 (~R)

]
~R=0

µm,shift1 , (4.25)

which after expanding the sum and subsequently making use of the relations O−|m|l =
(−1)|m|O|m|l

∗
and µ

−|m|
l = (−1)|m|µ|m|l

∗
between the expansion coefficients and their

complex conjugates leads to

− ~E(~R) = 2
 Re{O1

1
′(0)}Re{µ1,shift

1 }

− Im{O1
1
′(0)}Im{µ1,shift

1 }

+O0
1
′(0)µ0,shift

1 .

(4.26)
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The prime denotes the gradient, that reads ∂x
∂y
∂z

(O0
1(0) ,O1

1(0)
)

=

 0 1/2

0 −i/2

1 0

 (4.27)

and finally for the electrical field

~E(~R) = −

 Re{µ1,shift
1 }

Im{µ1,shift
1 }

Re{µ0,shift
1 }

 . (4.28)

The superscript index shift still denotes, that an expansion around −~R is used instead
the expansion around the cell origin, that results from (4.21). Fortunately, the standard
FMM formalism delivers the local-to-local (L2L) operator [165, 257]

µml ([~r −~b]) =
∞∑
j=0

j∑
k=−j
Ok−mj−l ([~0],~b)µkj ([~r]) , (4.29)

that translates a Taylor expansion to a different center, that is given in square brack-
ets. Here it can be applied via

µm,shiftl =
∞∑
j=0

j∑
k=−j
Ok−mj−l (−~R)µm,centl . (4.30)

It replaces (4.22) and has to be evaluated together with (4.28) for every particle and
l = 1 and m = 0,1 to compute the electrical field.

4.2.5 Renormalization approach for the lattice coefficients

The derived expressions (4.22) and (4.28) allow the far-field contribution to the electric
potential and field to be computed conveniently and – with only an O(N) overhead
– in an efficient way. However, the lattice coefficients (4.19) as the only geometry-
dependent parameters are still to be determined. Being composed of an infinite sum
over all far-field lattice cells, they cannot be evaluated directly.

Using an Ewald-like approach, Challacombe et al. did this for the first time in the
FMM framework [256]. However, a similar formulation by Nijboer that is also based
on spherical multipole expansions already existed before the Fast Multipole Method
has been invented [258]. Kudin and Scuseria followed and extended these works.
They proposed a renormalization scheme for evaluating the emerging infinite sums and
provided a formulation for arbitrary cell geometry for force and stress tensor [259, 260].
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4.2 Periodic forces and potential

First developments on a pure real-space renormalization approach for the summation
over the infinite number of lattice sites using recurrence relations for the multipole
coefficients were performed by Berman andGreengard [261] and rigorously extended
by Kudin and Scuseria [257] Their efficient renormalization approach, is also utilized
in the implementation of periodic boundary conditions in PEPC that is described in
the following.

The standard FMM operators multipole-to-multipole (M2M)

ωml ([~a+~b]) =
l∑

j=0

j∑
k=−j
Om−kl−j ([~0],~b)ωkj ([~a]) =: O([~0],~b) � ω([~a]) , (4.31)

and multipole-to-local (M2L)

µml ([~a− ~r]) =
∞∑
j=0

j∑
k=−j
Mm+k

l+j ([~0],~r)ωkj ([~a]) =:M([~0],~r)⊗ ω([~a]) , (4.32)

where the previously omitted expansion centers are now given in square brackets again,
are used to shift multipole expansions to a different center and to transform multi-
pole coefficients into local Taylor coefficients. Naturally, the infinite sums in (4.29)
and (4.32) can be truncated at j = p if p is the maximum order of multipoles to be used.
Only for the M2L operator, does this introduce an additional error, since higher-order
expansions are necessary anyway due to the sums in the indices.

The formal binary operator notation defined on the right hand side of (4.31) and (4.32)
will be used later to simplify notation and improve readability. This notation as well
as the algorithm that is based on it and will be deduced here loosely follows the one
given in [257].

In this section, a generic lattice with linearly independent basis vectors ~t1,~t2,~t3 ∈ R3

will be considered. With the index vector ~k ∈ Z3, the shift vectors to the lattice cells
are

~q =
3∑
c=1

k(c) · ~tc , (4.33)

where as before the superscript indices signify vector components. Clearly, periodicity in
less than all three spatial dimensions can be handled by fixing the respective coordinates
in ~k and hence in ~q to zero. Now, the Taylor expansion around the origin due to the
cell’s contribution at ~k can be deduced by shifting it with the previously introduced
M2L operator (4.32) as

µ~k =M(~k)⊗ ω , (4.34)

71



4 Periodic boundary conditions

Figure 4.4: Regions to be considered in the derivation of the lattice coefficient al-
gorithm. The original (central) simulation cell OC is drawn as a green
square, its near-field region NF in light blue. The first far-field layer FF’
is composed of multipole expansions of the central 30 × 30 × 30 cell OC
that are shifted to appropriate positions. The second far-field layer FF”
is built out of replicas of the central 31 × 31 × 31 block OC∪NF and the
next far-field layer FF”’ comprises 31 × 31 × 31 blocks.

where ω is the multipole expansion of the central cell. Since in this expression the
center of expansion is fixed at the origin, multiple such terms can be summed to get
the expansion for a group of replica cells. In the following, this will be done in a very
efficient way to ideally cover the complete periodically filled spatial domain.

Figure 4.4 shows several colored regions around the central cell at ~k = (0,0,0) which
will be used in the derivation of an iterative hierarchical process for approximating the
infinite lattice sum. The Taylor expansion of the far-field region, that is shown as red
and teal domains but also lies beyond these, is given by

µ =
∑

~k/∈(OC∪NF)

M(~k)⊗ ω . (4.35)
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4.2 Periodic forces and potential

The regions OC and NF denote the original cell and its near-field. Colors correspond
to those in Figure 4.4. Due to linearity of the M2L operator, ω can be factored out and
only

S =
∑

~k/∈(OC∪NF)

M(~k) (4.36)

has to be computed as the geometry dependent part.

As the starting point for the hierarchy of super-cells that will be used, all cells are
considered where |~k| ≥ 2 and k(i) ≤ 4 for i = 1,2,3. This region that lies in the far-field
of the central cell ~k = (0,0,0) but in the near-field of the central 31× 31× 31 super-cell,
will be denoted as FF’ and is shown in red color in Figure 4.4. With the definition of
the translational moments

M? :=
∑

~k∈FF′
M(~k) , (4.37)

the Taylor expansion in the sense of (4.35) is

µ0 = µ′ =M? ⊗ ω ′ (4.38)

with

ω ′ = ω , (4.39)

that now includes contributions of the 32×32×32 super-cell without the central (OC∪
NF). It can be seen as a lowest-order approximation to the far-field expansion.

The cells lying in the near-field of FF’ will be denoted as FF”. They are shown in teal
in Figure 4.4 and cover a 33×33×33 region with the central (OC∪NF∪FF′) cut out.
As FF” is essentially constructed of sub-blocks which are comparable to (OC ∪NF),
it can be built out of 31 × 31 × 31 contributions of the form

ω ′′ = O? � ω ′ , (4.40)

with

O? :=
∑

~k∈(OC∪NF)

O(−~k) . (4.41)

Using the (with the operator UM() that will be defined later) rescaled translational
moments from before, the Taylor expansion of FF” is

µ′′ = UM(M?)⊗ ω ′′ (4.42)
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and together with the contribution of FF’ yields

µ1 = µ0 + µ′′ (4.43)
=M? ⊗ ω ′ + UM(M?)⊗ ω ′′ . (4.44)

The next level of super-cells (that already lies outside the scope of Figure 4.4) can be
included by also rescaling O? and applying it twice to get the multipole expansion

ω ′′′ = UO(O?) � ω ′′ (4.45)

of a 32 × 32 × 32 super-cell. It has to be shifted further outward again, to yield

µ′′′ = UM(UM(M?))⊗ ω ′′′ (4.46)

and together with the previous contributions

µ2 = µ1 + µ′′′ (4.47)
=M? ⊗ ω ′ + UM(M?)⊗ ω ′′ + UM(UM(M?))⊗ ω ′′′ . (4.48)

Since the multipole and Taylor coefficients O(~r) and M(~r) are polynomials in |~r|,
see (4.10) and (4.11), the scaling operators, increasing all lengths by a factor of (2ws+1),
become trivial multiplications

UO(Oml ) := Oml (~r → (2ws+ 1)~r) = (2ws+ 1)l · Oml , (4.49)

UM(Mm
l ) :=Mm

l (~r → (2ws+ 1)~r) = Mm
l

(2ws+ 1)l+1 . (4.50)

The series µ0,µ1,µ2, . . . rapidly converges towards µ since more and more larger portions
of the complete far-field are included. However, for the geometry-dependent coefficients
to be pre-calculated, it is necessary to factor out the multipole expansion ω of the
central cell. It depends on all particle positions and hence changes from one simulation
timestep to the next. Using (4.39), (4.40), and (4.45) in (4.38), (4.42), and (4.46), the
multipole expansion ω of the central cell always appears rightmost:

µ′ =M? ⊗ ω (4.51)
µ′′ = UM(M?)⊗ [O? � ω] (4.52)
µ′′′ = UM(UM(M?))⊗ [UO(O?) � [O? � ω]] (4.53)

and hence can be factored out in the sense of (4.36). Due to linearity of the operators,
the identities

M⊗ [O1 �O2] = [M⊗O1]⊗O2 (4.54)
O1 � [O2 �O3] = [O1 �O2] �O3 (4.55)

UM(M)⊗ UO(O) = UM(M⊗O) (4.56)
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hold [257, 262]. These can be applied – after some reorganization – to yield expressions
of the form µn = Sn ⊗ ω with

S0 =M? (4.57)
S1 =M? + [UM(M?)⊗O?] (4.58)

=M? + [UM(S0 )⊗O?] (4.59)
S2 =M? + [UM(M?)⊗O?] + [[UM(UM(M?))⊗ UO(O?)]⊗O?] (4.60)

=M? + [UM(M? + UM(M?)⊗O?)⊗O?] (4.61)
=M? + [UM(S1 )⊗O?] . (4.62)

Clearly, this series of partial sums can be recast into the recursive scheme

S0 =M? (4.63)
Sn+1 =M? + [UM(Sn )⊗O?] (4.64)

that eventually converges to the lattice sum

S = lim
n→∞

Sn . (4.65)

The resulting lattice coefficients finally can be inserted into (4.35), or (4.21) with L = S,
respectively. Informally, this renormalization approach to compute the lattice coeffi-
cients can be interpreted as an iterative process that scales the current box expansion,
shifts it to every super-block position at the next level and adds the inner FF’ ring
again.

During the process, it can be noted that the monopole and dipole contributions in S
do not converge. The reason for this is a physical one: For the monopole, summing
over an infinite number of charged cells leads to an infinite total potential, while the
electrical field remains unchanged since only a global potential shift is experienced.
While the approach can in principle handle such systems by simply setting the monopole
contribution to zero, the resulting lattice energy will be wrong (though not needed in
molecular dynamics simulations) and thus – being unphysical anyway – these cases
should be avoided. The dipole sum however, is conditionally convergent. It is corrected
for by a special procedure, that is explained in more detail in Section 4.2.7.

Using this technique, after n iterations

NFF
n =

[
3n·dim − 1

]
(2ws+ 1)dim (4.66)

far-field boxes are included in the lattice sum, where dim is the number of spatial
dimensions where periodicity is desired. Thanks to this rapid growth, already after
n = 32 iterations with a maximum multipole order of p = 20 and maximum length
of Taylor expansions 2p = 40, most digits of double precision are converged and the

75



4 Periodic boundary conditions

high-precision results for cubic lattices of [256, 257, 262] are reproduced with sufficient
precision. As already mentioned, the approach is completely general due to the free
choice of the lattice basis ~t1,2,3. It can be applied to non-cubic and even non-cuboid
lattices as long as (4.18) is fulfilled, which can be achieved by increasing ws if necessary.
Since the calculation of lattice coefficients only has to be performed once per simulation
at a cost of few seconds runtime, it has no significant impact on the total runtime and
has not been parallelized. The code section, that finally translates the far-field Taylor
expansion to every particle for evaluating (4.22) and (4.28) is inherently parallel, since
with the exception of the already pre-calculated µcent0 , no global information is necessary.

4.2.6 Near-field

Considering again Figure 4.4, the original cell OC is handled with the classical Barnes-
Hut tree code and the far-field FF′ ∪ FF′′ ∪ FF′′′ ∪ . . . is treated via the FMM-
renormalization approach. This still leaves the near-field region NF, that – due to
the constraint for absolute convergence (4.18) – cannot be included into the far-field.
In the implementation in PEPC, it is simply dealt with as explained in Section 4.2.1
on next-neighbor periodicity through inclusion of these cells into the central cell’s tree
traversal. All features of this approach that were already mentioned still hold true,
but with the FMM far-field technique, this next-neighbor periodicity is no longer an
auxiliary construction but the brick that fills the gap between near-field and far-field.
Naturally, a too non-cubic cell violates the convergence criterion for the far-field, as
can be seen from Figure 4.3. However, this flaw can be mitigated by increasing ws and
hence the near-field itself appropriately.

4.2.7 Dipole correction

As shown in [263, 264] and further extended in [265], the electrostatic potential in a
lattice can be written as a sum of two contributions

Φ(~r, C, L) = Φint(~r) + Φext(~r, C, L) , (4.67)

where C and L denote the shape, volume and other specifications of the unit cell and the
complete macroscopic crystal under consideration, respectively. Being only a function
of position ~r, the intrinsic potential Φint is a periodic function, while the extrinsic
potential Φext is non-periodic and strongly depends on the choice of the unit cell and the
surrounding region, i. e. the position of the cell under consideration inside the crystal.
Explicit expressions for Φext can be given for some special cases, e. g. an ellipsoidal
region or a cubic or spherical region, that will be important for the implementation of
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periodic boundary conditions here. For the extrinsic potential, the expression

Φext(~r, C, L) = 4π
3V (~r − ~r0)

N∑
k=1

qk~rk −
2π
3V

N∑
k=1

qk|~rk|2 (4.68)

can be derived from the general ellipsoidal case. The sums run over all particles in the
central cell and hence represent the cell’s dipole and trace of its quadrupole moment, ~r0
denotes the center of the region under consideration and V is the central cell’s volume.
Note that the expression given in [256] lacks the explicit volume factor, since unit cells
are assumed there.

When performing molecular dynamics simulations, periodic boundary conditions are
applied to emulate an infinitely extended bulk system to avoid discontinuities in the
potential when applying periodic movement constraints, i. e. when inserting particles
that left the simulation region on the opposite side. This is necessary to ensure conser-
vation of total energy and momentum. As shown in [263, 264], the standard Ewald
procedure as given in Section 4.2.3 provides an intrinsic potential and hence does not
show any dependence on the overall shape of the crystal (that in fact does not come
into play at all here). This also holds true for the minimum image convention from
Section 4.2.2 – see [265].

The pure real-space sum for supporting periodic boundary conditions implemented here,
clearly assumes a certain shape of the surrounding crystal matter. Being extended by
an equal number of replicas into every periodic direction it is an upscaled version of the
unit cell. Although the surfaces lie far away from the central cell, the truncation of the
iteration (4.64) in fact defines this shape. Consequently, the method delivers the sum
of extrinsic and intrinsic contributions. For it to be usable in molecular dynamics simu-
lations with periodic boundary conditions, the extrinsic potential has to be subtracted
so that

Φlat = Φfar-field − Φext , (4.69)

where Φfar-field is the result of (4.22). The correction for the electrical field can be found
as the gradient of (4.68):

~Elat = ~Efar-field + 4π
3V

N∑
k=1

qk~rk (4.70)

with ~Efar-field from (4.28). This technique corrects for the conditionally convergent dipole
sum in the lattice coefficient algorithm.

As already mentioned, (4.68) is only valid for cubic boxes. An extension for cuboid
cell shapes can be derived from the ellipsoid expression given in [265]. A generalization
to non-cuboid cells cannot be performed by this approach, though. For applications
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with non-orthogonal unit-cells, such as triclinic systems, an approach for eliminating
the conditionally convergent dipole contribution is proposed in [259, 260]. It is based
on adding a number of particles that compensate for the cell’s dipole moment without
modifying overall physical properties. Therefore, additional charges q1,2,3,4 are placed
at the (in the periodic system) translationally equivalent points

~p1 =

 1
0
0

 , ~p2 =

 0
1
0

 , ~p3 =

 0
0
1

 , ~p4 =

 0
0
0

 , (4.71)

q1 =
~d(1)

L(1) , q2 =
~d(2)

L(2) , q3 =
~d(3)

L(2) , q4 = −(q1 + q2 + q3) . (4.72)

Here, ~d(i) is the ith component of the cell dipole moment and L(i) are the respective box
lengths. The coordinates of the virtual particles are given in the lattice basis system
and obviously correspond to unit cell corners. While these particles indeed annihilate
the dipole moment of the central cell and even modify the overall field inside, after
periodic continuation, they in fact compensate for each other. In a completely periodic
system they reside in the same spot and show a total charge of zero. This approach
can also be used for 2D and 1D periodic systems, where again (4.68) cannot be applied
directly.

4.3 Verification of correctness and computational
overhead

In order to verify correctness of our implementation of the approach for periodic bound-
ary conditions, we return to the melting NaCl crystal that was also used in Section 3.1.3
for analyzing the influence of different choices for the multipole acceptance parameter
ϑ. In Figure 4.5 we show the same graph as before in Figure 3.4a but with periodic
boundary conditions now. Since a direct evaluation of the sum over periodic mirror cells
is not possible, we compare with data obtained using a standard Ewald implementa-
tion that is part of the ScaFaCoS library [156, 180]. Obviously, the overall behavior of
the error is unchanged and it goes down to ≤ 10−6 for ϑ = 0. The approach for periodic
boundary conditions does not have any free parameters besides the maximum multipole
order p and hence is not depending on ϑ. Accordingly, the primary contributions at
ϑ > 0 still result from the multipole approximation that is performed for the central
box and the near-field region here, as the far-field contribution to the errors should be
visible in the plot as a shift that is globally applied to the curves when compared to
Figure 3.4. For ϑ = 0.3, all errors are still bound below 1.5 % which is acceptable for
our simulations. This results seems to be general as for all test systems, from a very
regular Madelung crystal to randomly arranged periodic systems, from comparisons
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Figure 4.5: Precision comparison for a periodic system and different multipole accep-
tance parameters ϑ. The graphs show the maximum and root-mean-square
relative errors for potential, field and total potential energy compared be-
tween PEPC and results from an Ewald approach. The example system
considered for this comparisons is the same 12,960 particles open-boundary
extract of a melting NaCl crystal as in Figure 3.4 but is now periodically
extended to infinity. Reference values were produced using a standard
Ewald implementation from the ScaFaCoS library [156, 180]. For ϑ = 0.0
the relative errors reach 10−14 which is expected as the numerical limit for
double precision computations.

with literature values and other methods, e. g. a high-precision FMM [262], it is seen
that the main error in potential and forces results from the Barnes-Hut tree code
algorithm. Errors introduced from the far-field are usually smaller by two orders of
magnitude.

Especially in simulations of periodic systems over a long physical time, the errors intro-
duced can accumulate if they have a dominant direction. This is for example the case if
the dipole correction from Section 4.2.7 is omitted. Eventually, such an error accumula-
tion will lead to violating the conservation of total energy. However, seen in Figure 4.6,
no significant energy drift in fully periodic systems is observed for ϑ ≤ 0.5. This is
not the case for the trivial nearest-image method which underlines the importance of a
precise treatment of periodicity in our molecular dynamics simulations.

The computational overhead introduced by the approach for periodic boundary condi-
tions implemented here is moderate. The lattice coefficients only have to be computed
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Figure 4.6: Verification of energy conservation with periodic boundary conditions. For
different values of the multipole acceptance criterion ϑ, the evolution of
the total energy for a cubic system of Nel = Nion = 1,000 charges in
equilibrium is studied. For the open and the fully periodic system with
the approach presented in this chapter, energy conservation is confirmed
for small enough multipole acceptance parameters ϑ ≤ 0.5. In contrast,
the system that only comprises nearest-image periodicity, see Section 4.2.2,
suffers from significant heating due to the discontinuous forces experienced
by the particles that are wrapped to the opposite side of the simulation
box by means of the periodic movement constraint, Section 4.1. Data for
the open, i. e. non-periodic, system is included for getting an estimate of
the energy fluctuations that are evident due to the tree code’s multipole
approximation.

once per simulation and are independent of the number of particles N . Thus, we can
omit them in this analysis. The evaluation of (4.20) and (4.21) have an algorithmic
scaling of O(p · N) and O(p3), respectively because they are only evaluated once per
timestep. The computation of the far field contribution to the force (4.28) with (4.30)
has to be performed for every individual particle and accordingly scales as O(p2 ·N). All
these algorithmic scalings can be neglected in comparison to the O(N logN) scaling of
theBarnes-Hut tree code part that is used for the central cell and the near-field. In the
3D-case, the near-field consists of 26 boxes, so that the number of interaction partners
grows by a factor if 27 when including periodic boundaries. Accordingly, the central-
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Figure 4.7: Ratio of runtime for periodic and non-periodic setup. Again, the melting
NaCl crystal from Figure 3.4 is used – now with different total particle
numbers. Starting for N ≥ 106 the runtime factor introduced due to
periodic boundary conditions starts to saturate in accordance to the al-
gorithmic scaling of the approach for periodic boundaries. Consequently,
for N →∞, the additional runtime needed is negligible.

cell and near-field contributions yield an O(N log(27N)) ∝ O(N log(N) + N log 27)
which is an additional linear term that vanishes in comparison to the N logN part for
N → ∞. Thus, the overall scaling of the Barnes-Hut tree code is not compromised
by the method. This can also be seen in Figure 4.7 that shows the ratio of the runtimes
for periodic and non-periodic setups. There, for N ≥ 106 saturation of the additional
factor to the runtime of the non-periodic system occurs as the O(N logN)-term begins
to dominate the overall runtime again.

4.4 Summary

With the renormalization approach for the lattice coefficients and their FMM-based
utilization, an efficient technique for including periodic boundary conditions into the
parallel Barnes-Hut tree code PEPC has been implemented. It overcomes the limi-
tations of the tBHE approach, that has been implemented experimentally in an older
version of the code [246] and even adds further features. Being able to consistently deal
with 1D-, 2D-, and 3D-periodic systems in cubic, non-cubic and even non-cuboid ge-
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ometries, it prepares the code for simulations of wire-, slab-, and bulk-shaped systems.
It is free of any arbitrary parameters and can be driven up to machine precision. How-
ever, since the tree code itself currently employs expansions up to quadrupole order in
the central cell and its near-field, precision of the far-field is not too critical for our pur-
poses. Since the order of included multipole expansions p is variable in our approach,
though, it is also prepared for backends with higher expansions for the central cell in
the future.

As the code is now able to perform bulk simulations with virtually an infinite number of
particles without increasing the actual particle number, it is applicable for the studies
on optic and dielectric properties in solids that will be topic of Chapter 7.

While all effects of artificial surfaces and finite simulation size are mitigated using
periodic boundary conditions, partially open system still have to be handled with care.
For example, when studying laser-particle acceleration in a slab geometry using 2D
periodic boundaries, the periodicity also replicates the laser beam, which is usually not
the desired behavior. Here, still the only solution is to increase the system size by
increasing the number of simulation particles. However, since such setups will not be
of interest in this work, their specialties will not be discussed any further here.

Based on the implementation developed in this work, currently a version for 2D-
Coulomb interaction

Φ~r =
N∑
i=1

qi log
(
|~r − ~ri|
L

)
(4.73)

with ~r, ~ri ∈ R2 and a metric constant L is being developed [266]. The potential (4.73)
represents the interaction of charged parallel rods that perpendicularly penetrate the
x − y plane. This can, for example, be used as a model for particles that are confined
to external magnetic field lines. Their rapid movement along these lines is averaged to
form a charged rod that moves slowly perpendicular to the field lines.
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5.1 Hybrid parallelization

Most of today’s supercomputers incorporate at least two levels of parallelism: They
consist of large numbers of distributed memory nodes, that in turn provide a number
of processors sharing common main memory. Currently, the tendency is for the total
number of cores to increase, while the amount of memory per node and the total number
of nodes as well as the performance of each individual processor have stagnated. For
example, the IBM Blue Gene/P machine JUGENE in Jülich had 73,728 nodes, each
consisting of 4 processor cores and 2 GB of main memory [267]. Its successor, the
Blue Gene/Q supercomputer JUQUEEN consists of 28,672 nodes and 16 processors
with doubled clock rate per node, which are theoretically most efficient if they are
oversubscribed by a factor of four [268]. This means that every processor should be
occupied by four concurrent program threads to obtain maximum performance. Thus,
while the compute power per node increased by a factor of approximately

2 (clock ratio)× 4 (processor number ratio)
× 4 (optimal threads per processor) = 16 ,

(5.1)

the amount of memory per node only increased by a factor of 8 to 16 GB. Accordingly,
it is necessary to make use of the possibility of processors on the same node to share
common data instead of duplicating it or even exchanging information via the message
passing system. On such a hybrid machine it is clearly inefficient to spawn 16 or even
up to 64 MPI ranks per compute node. Given these constraints it is natural to also add
another level of parallelism to the tree code that makes as efficient use of the available
hardware parallelism as possible. This can be achieved by only using one MPI rank per
compute node and starting 1 . . . 4 sub-threads per processor – Figure 5.1.

Besides avoiding duplicate storage, the idea of hybrid parallelization offers a multitude
of further advantages. First of all, the total number of MPI ranks is reduced since there
is only one rank per node instead of one rank per processor. This reduces the num-
ber of communication partners in global as well as in point-to-point message exchange.
Furthermore, due to the locality and self-similarity of the space-filling curve that has
been used for domain decomposition, the particles that reside on neighboring proces-
sors have similar interaction lists anyway. Hence, they request the same remote tree
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(a) pure-MPI approach: one rank per
core, lots of identical data on shared
memory nodes

(b) hybrid: one rank and accordingly
one hash table and tree per shared-
memory-node, several worker-threads
per rank

Figure 5.1: In contrast to the previous pure-MPI approach, the hybrid parallelization
avoids duplicate storage and makes use of the available shared memory
parallelism.

nodes. By having only one MPI rank and a tree common to all local processors, those
requests only have to be sent once instead of on a per-processor-basis, which reduces
the total number of messages that have to be exchanged drastically. Secondly, the re-
duced number of MPI ranks leads to fewer but larger particle chunks to be distributed
during the domain decomposition. This simplifies load balancing across the nodes and
postpones load balancing issues to the shared-memory parallelism level, where they can
be corrected on the fly as will be shown below.

The newly developed algorithmic techniques and implementation details described in
this chapter have partially been published in [269].

5.1.1 An MPI + Pthreads tree traversal

To make use of the two-level parallelism available in hardware, the tree traversal as the
most time-consuming part of the code has been parallelized accordingly using a hybrid
approach of MPI and Pthreads. Distributed memory parallelism using the Message
Passing Interface (MPI) was already implemented before and follows the latency hiding
scheme that has been presented in Section 3.2. However, besides the already mentioned
advantages of a hybrid parallelization, it was also intended to allow for a native overlap
of computation and communication during the tree traversal. Therefore, the exchange
of tree nodes had to be separated from the tree traversal with its MAC evaluations
and the calculation of the actual interactions. Whereas it was performed in a separate
subsequent step previously, in the new implementation the interactions are evaluated
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immediately, allowing further communication latency to be hidden behind the expensive
floating point computations.

Intra-node parallelism is implemented using the standard POSIX Threads (Pthreads)
facilities, that are available on any POSIX-based operating system and thus maintaining
the excellent portability of PEPC. The so-called threads represent different execution
paths within a single application, executed in parallel if shared memory parallelism
is available. Otherwise, the operating system’s scheduler assigns them processor time
slices to virtualize this parallelism. In contrast to sub-processes, threads share a com-
mon address space with each other and their calling program. Despite implementation
difficulties with calling C-library functions from Fortran code, these were chosen in fa-
vor of OpenMP, a more standard approach for shared memory parallelism. In contrast
to OpenMP, Pthreads offer a great deal of better flexibility, especially when very dif-
ferent tasks are to be handled by the different threads. A similar feature has only been
included in the most recent version 3.0 of OpenMP.

In Figure 5.2, a flowchart shows the technical details of the approach, a pseudo-code
overview is given in Algorithms 5.1 and 5.2. After some initialization, the tree traver-
sal, that is pictorially called walk here, spawns an adjustable number of worker-threads.
These distribute the local particle chunk among themselves and perform the tree traver-
sal for their individual particle subsets in parallel. Therefore, they also administrate
their own share of the global todo-list, that contains the deferred nodes etc. for all
particles. At some point, during their traversals the threads need tree node properties
from remote processors. As in the latency-hiding scheme in Algorithm 3.2, the respec-
tive parent key is put onto a request-list and the particle traversal is deferred until the
necessary data is available. Furthermore, a flag in the hash-table is set for the respective
parent node to avoid duplicate requests by other threads. The request-queue itself is
shared across the worker threads. It is continually processed by the main thread of the
process, responsible for all communication tasks, working as the communicator thread.
It sends requests for child node properties from the local request queue to remote MPI
ranks and answers their requests with data from the local hash table. Upon reply on
its own requests, the communicator thread receives tree node data from remote ranks,
inserts it into the local hash table and sets the children-available-flag for the respective
parent node.

After processing other particles from its allocated chunk, the worker thread that orig-
inally posted the request, will eventually return to the deferred particle. Since the
children-available flag for the previously unavailable node is now set, it can proceed
with the traversal here and – depending on the MAC – perform the interaction or
request further nodes.

An excerpt of the traversal is additionally shown in Figure 5.3. It illustrates the path
taken by an individual request over time. During its alternating task of tree traversal
and force computation (green and red), thread 2 hits an unavailable node that it needs in
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Figure 5.2: Flowchart of the hybrid parallelized tree traversal in PEPC. The thick
red arrow represents the communicator (main) thread, green arrows rep-
resent worker threads. Information about the request queue length and
the amount of received messages during the previous sleep periods of the
communicator are used to adjust its suspend period length.
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Algorithm 5.1 Hybrid parallelized traversal: Worker-threads
while still particles unfinished do

take K ≤ MaxParticlesPerThread
for k = 1 to K do

pick tree node from particle’s todo list
evaluate MAC
if MAC ok then

call Interact(with node)
else

if node’s children locally available then
put all children to front of particle’s todo list

else
call PostRequest(for child nodes)
put node on end of particle’s todo list

end if
end if

end for
end while

Algorithm 5.2 Hybrid parallelized traversal: Communicator-thread
while not globally all traversals finished do

while incoming requests in queue do
answer with requested data from hash table

end while
if not locally all traversal finished then

while answer for own requests in queue do
insert received data into hash table
notify worker about new data

end while
while local request list not empty do

send requests to remote communicators
end while
adjust timeout
sleep

end if
end while
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Figure 5.3: Schematic flow of the hybrid parallelized PEPC. For every MPI rank,
there is one communicator thread (thread 0) that handles all inter-node
communication via MPI and n several worker threads which perform tree
traversal and force computation. As the communicator is not permanently
occupied, it can share its processor core with one worker thread. There-
fore, an advanced scheme for thread switching has been implemented to
reduce answer latency caused by sleeping communicators. Figure taken
from [269].

order to proceed. It notifies the communicator thread 0 about the missing information
and resumes traversal and force computation with some other particle. In the meantime,
the communicator forwards this request to the recipients MPI rank and receives the
corresponding data at a later time. After insertion into the local hash table, the worker
threads are informed by setting the appropriate flag. Now, thread 2 can continue the
traversal for the deferred particle.

As demonstrated in Figure 5.4, the implementation of this hybrid parallelization ap-
proach works just as expected: All four cores are permanently occupied – three of
them with tree traversal and force computation and the other one with communication
and computation alternately. The latter is done since there is not enough work in the
communicator thread to keep a single computer core permanently occupied. Hence it
is expedient, that the communicator’s core is shared with another worker. This ex-
actly resembles the projected behavior from Figure 5.3. Additionally, by funneling all
MPI communication through the primary thread, no thread-safe MPI implementation
is necessary.
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Figure 5.4: Execution trace of the hybrid parallelized PEPC. Only for MPI rank 0, all
five threads that are running on the four available cores are shown. For
ranks 1 to 3, only the respective communicator thread is visible. Commu-
nication (red blocks and black lines) nicely overlap. Furthermore, the al-
ternating cycles of sleeping (olive and magenta blocks) and working (other
colors) of the communicator and the last worker thread are visible. This
execution trace was obtained using Vampir and VampirTrace [190].

Not only has an additional layer of parallelism been successfully added to the code,
but the complete communication scheme benefits from the implemented modification.
Before, a globally synchronized bulk-transfer of requests and answers was used. Now,
communication is performed in a completely asynchronous point-to-point scheme. Re-
quests are sent and answered as they occur, answers are received and incorporated into
the hash table as soon as they are received. Instead of all ranks having to be synchro-
nized, only two communication partners are participating and short latency is, though
optimized for, not strictly necessary. The advantage of this scheme for load balancing
will be addressed later. However, the approach also poses new difficulties on the inter-
node networking hardware, that is regularly optimized for the often-appearing global
communication patterns or only nearest-neighbor communication. Here, fast random
point-to-point connections with near and far compute nodes are necessary. Architec-
tures like the Blue Gene/P and Blue Gene/Q with their torus networks already allow
for fast communication paths also to far-away compute nodes, and thus are well suited
for this technique.
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5.1.2 Performance results for the new approach

In the previous section, the newly developed completely asynchronous and hybrid par-
allelized tree traversal for the classical Barnes-Hut tree code has been presented as
a replacement for the previously implemented latency-hiding scheme of Warren and
Salmon. With it, the processors on shared-memory nodes can make use of common
administrative and particle data. Through our approach, a native overlap of commu-
nication and computation is obtained. Furthermore, the code’s memory demands are
reduced significantly, since

1. interaction lists are not necessary due to the immediate force evaluation,
2. all processors on a shared memory node use a common tree,
3. fetched data from remote processors is only stored once per node, and
4. further administrative data is shared between the processors.

Besides these clear advantages over the MPI-only implementation with one rank per
processor, the implementation of the hybrid parallelized tree traversal made an exten-
sive rewrite of the code necessary. This significantly improved code stability and allowed
for a substantial restructuring, grouping many different interaction backends and ap-
plication frontends in a monolithic framework. These extensions will be discussed later
in Section 5.3.

In order to test the algorithm, code extensive scaling experiments were performed on
the IBM Blue Gene/P machine JUGENE at Jülich Supercomputing Centre on up to
294,912 processors and with up to N = 2,048,000,000 particles. Previously, the code
was not able to run on these large scales due to prohibitive memory demands. With the
new approach, this became possible, see Figure 5.5. Moreover, as depicted in Figure 5.6,
the new implementation exhibits high efficiency for homogeneous (Figure 5.6a) as well
as inhomogeneous (Figure 5.6b) particle configurations. The previous scaling limit
beyond 8,192 processors from Figure 3.8 has been removed. Now, force computation
for extremely large systems with hundreds of millions of particles in reasonable wall-
clock times is in reach. The evaluation of the mutual forces between 2 billion particles,
that would have been taking almost 15 minutes on 4,096 JUGENE cores (if it was
possible at all with the previous implementation), now needs less than 15 seconds on
the whole machine.

Since the combined tree traversal and force computation routine is the most time-
consuming and demanding part of the algorithm as regards scalability, Figure 5.6 con-
centrates just on this part. As the scaling results are shown to be comparable for the
different configurations, we study performance data for the homogeneous setup in more
detail. While the tree traversal shows good parallel efficiency, the complete tree code
also includes the previously mentioned steps of domain decomposition and local as well
as global tree construction with the previous branch node exchange. Figure 5.7 ana-
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Figure 5.5: LLView [270] screenshot with PEPC running on all 294,912 processors of
JUGENE. Before implementing the hybrid parallelization, this was not
possible at all.

lyzes the two primary contributions to the overall runtime of a single simulation step
for the homogeneous setup with different particle numbers N . While the tree traversal
shows the good scaling already demonstrated, the exchange of branch nodes starts to
dominate the total runtime as soon as the number of particles per core drops below
N/C = 2,000. For simulations with few hundred cores, the exchange is completely neg-
ligible. However, the number of branch nodes per rank has empirically been seen to
be constant, see [188, 269], which leads to a linear growth O(P ) of their total number
with the number of MPI ranks P , compare also Section 5.2. This issue that is intrinsic
to the parallel tree code has been significantly mitigated by the hybrid parallelization
because there is only one MPI rank per compute node instead of per compute core now.
Hence, the overall number of branch nodes and consequently their impact on runtime
has been reduced with the developments described in this chapter. To prevent the
collective branch node exchange from finally dominating the runtime for very large par-
allel computers that comprise hundred thousands of distributed-memory nodes, some
additional improvements were tested and implemented. They will be discussed shortly
in Section 5.2.

To estimate the parallelization overhead, the weak scaling properties of PEPC are shown
in Figure 5.8 with especially small workloads per core, i. e. small particle numbers. Since
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(a) Setup with a homogeneously filled, overall charge neutral cube.

(b) The inhomogeneous setup is composed of 42 randomly positioned neu-
tral spheres.

Figure 5.6: Strong scaling of the tree traversal and force computation part of the algo-
rithm for different total particle numbers N and compute cores C for the
homogeneous (top) and inhomogeneous (bottom) particle distributions.
The insets show the test particle setups used for the performance analysis,
from [269].
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the number of particles has to be increased linearly with the number of processors here,
an algorithm with nonlinear complexity – as the Barnes-Hut tree code, that scales
as O(N logN) – cannot yield constant runtimes in this analysis. Instead, the expected
behavior is drawn with dashed lines in Figure 5.8. At 6,944 particles per processor, ideal
scaling up to 16 k cores and acceptable scaling up to C = 288 k cores is achieved. At the
lower extreme with 244 particles per core, the surprisingly good scaling already saturates
around C = 8 k cores, i. e. P = 2 k MPI ranks. Again, this has to be attributed to
the O(P ) contributions from the remaining collective operations that appear during the
tree-build phase. However, as already indicated, fresh developments have been started
to mitigate this issue – see Section 5.2.

Despite the non-ideal efficiency for small systems, with its impressive scaling up to
hundreds of thousands of processors with particle numbers up to 2 billion, PEPC is well
positioned to make efficient use of upcoming supercomputer generations with increasing
numbers of cores on every shared memory node.

5.1.3 Intra- and inter-node load balancing

As already mentioned in Section 3.3, PEPC already included a sophisticated load bal-
ancing mechanism to evenly distribute the actual work across the MPI ranks. This is
performed during the domain decomposition step by using the number of interactions
from the previous simulation timestep as the weight of each particle. Instead of evenly
distributing the particles across the processors, their total weight per rank is equalized.
The new hybrid parallelized implementation especially profits from this approach, since
traversal and force computation (which is in fact balanced by construction) are now
performed in a monolithic step. In contrast to the earlier version [175], the alternating
stages of traversal and force computation do not have to be balanced individually. Fur-
thermore, due to the hybrid parallelization, the total number of MPI ranks is reduced,
which simplifies the inter-node load balancing due to a reduced number of particle
chunks.

To summarize, the benefit from this already implemented load balancing is actually
enhanced with the hybrid parallelization. The overall effect can be seen in Figure 5.9,
where for the homogeneous setup with 2 billion particles, the traversal time is reduced
by approximately 8 %. Even better gain up to 15 % is reached for other configurations.

By adding the second level of parallelism, an additional level of load balancing has to
be included: The workload for the different processors on every shared-memory node
must be balanced. This is achieved by a straightforward competition-technique among
the worker threads. They are not allowed to grab all particles at once but must fill their
short todo-list successively. Starting from todo-lists of equal length, threads that finish
the traversal for a particle may take a new one from the shared pool. Thus, threads
that process particles with less work automatically grab more of them, balancing the
total work on the node so that all local worker threads finish synchronously.
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Figure 5.9: Number of computed interactions for a random subset of the 73,728 MPI
ranks with 288 k processors simulating 2,048,000,000 homogeneously dis-
tributed particles for unbalanced and balanced workload. Colors encode
the respective traversal time, including force calculation. Balancing the
number of interactions instead of the number of particles yields a reduction
of traversal time by approximately 8 %, from [269].

5.2 Branch nodes

Naturally, the overall performance of the parallel tree code strongly depends on the
overhead that is introduced due to construction and distribution of the tree data struc-
ture. As already seen in Figure 5.7, the hybrid parallelized tree traversal – which is
the main part of the algorithm – shows a better parallel efficiency than the branch
node exchange as soon as the number of particles per core reaches too small numbers.
Further analysis shows that with increasing numbers of MPI ranks P , the position of
the minima N/C increases linearly. This is to be expected, since with increasing P , the
branch nodes move to higher tree levels and hence their total number increases. Since
all of them have to be exchanged globally, the respective MPI_ALLGATHERV()
call must transfer more and more data to more and more endpoints. This essentially
prevents efficient scaling at a certain point.
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5.2.1 A-priori branch node estimation

The branch nodes are intrinsic part of the parallel tree code concept – their global
exchange cannot be circumvented. Consequently, it is necessary to define an optimal set
of branch nodes to reduce their total number. This can be performed in the hashed oct-
tree scheme by comparing the local minimum and maximum particle key on every rank
with the highest key of the left and the lowest key of the right neighbor, respectively.
The first digit where the keys differ, determines the tree level of the respective branch
nodes on both processors as was shown in [188, 269]. With this concept of branch nodes,
optimality with respect to tree level is guaranteed: Their level and hence their global
number is as small as possible. This could not be proven with other branch finding
algorithms that introduced many high-level branches if particles only occupied certain
corners of the simulation box.

Empirical tests showed that using this new branch finding approach the number of
branch nodes per rank is essentially constant with different number of ranks P – Fig-
ure 5.10. Consequently, their total number grows linearly with P and their global
exchange leads to the stagnation of parallel efficiency in Figures 5.7 and 5.8. However,
with the provable optimality of our branch concept, this scaling constraint cannot be
mitigated any further and new approaches are necessary. One of them is sketched in
the next section.

5.2.2 Hierarchical branch node clustering

One approach to circumvent the scaling bottleneck that results from further increas-
ing global branch number with increasing P makes use of the hierarchical structure
of the exchanged data. In the oct-tree, a maximum of eight branch nodes can con-
tribute to a common parent node in the tree. The idea behind the hierarchical branch
node clustering is to find all ranks that contribute to common ancestor nodes on a
certain predefined tree level blev. This clustering can efficiently be performed using
MPI_COMM_SPLIT() calls with extracts of the branch keys as splitting property
("color" in the MPI interface definition) to create a set of sub-communicators that cor-
respond to the respective ancestor nodes. Their members are then allowed to exchange
their contributing branch nodes and to compute the common super branch node.

The number of communication partners and hence the amount of exchanged data in this
step is limited by blev. Finally, all super branches are globally exchanged to construct
the global part of the tree on all ranks. The number of super branches is significantly
smaller than the total number of branches and is – with fixed blev – limited again.
Consequently, with proper choice of blev, this mitigates the scaling limit that results
from the branch node exchange.
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It is even possible to sweep blev from the maximum tree level towards root to allow for
a completely parallel hierarchical tree construction. A first experimental implementa-
tion [271] of this new approach shows promising results and will soon be included into
PEPC.

5.3 Modularity, applications, and further prospects

In this chapter, only the most important cornerstones of PEPC’s evolution during the
last three years could be outlined. However, these were not performed in isolation
from other applications besides plasma physics. On the contrary, the code’s structural
redesign and a modular concept developed as a byproduct here provided new impetus
to explore a much broader field of applications. Some details are given in Section 5.3.1
before Sections 5.3.2 to 5.3.4 discuss different paths of development that can be pursued
in future.

5.3.1 Modularity and further applications

As already indicated, together with the hybrid parallelization of PEPC, an extensive
rewrite of the code was undertaken. In the course of this revision process, a rigorous
modular concept was developed that cleanly separates the tree code algorithm from the
physically relevant parts such as force law, units, particle configurations, diagnostics,
etc. The idea is outlined in Figure 5.11. Through specification of mandatory interface
routines and data types, the tree code algorithm is kept separate from the interaction
specific backend routines and the frontend applications.

Since the multipole-acceptance criterion is part of the backend, data-dependent variants
can be implemented and the algorithm itself can even be exploited to identify the n
nearest neighbors of any particle as it is necessary for smooth particle hydrodynamics
(SPH). The tree code itself does not need any knowledge about the nature of the
particles apart from their position in space. All physical features such as the creation of
the multipole expansion, its propagation through the tree and the interaction routines
are provided by the backends. The frontend developer can select a certain backend –
for example one that contains all Coulomb-relevant features – or create a new one
and develop his frontend based on the supplied data types. When invoked from the
frontend, the tree code kernel transparently calls the interaction routines as needed and
behaves like a large-scale parallel N -body solver.

These modifications that make the code more of a developer’s framework than a library,
also allowed a number of development branches of PEPC to be reunified with the
main trunk. Currently, it supports five different backends, that range from Coulomb
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Figure 5.11: Modularity of PEPC. Mandatory interface routines and datatypes (gray
boxes) separate the tree code from the interaction-specific backends and
the frontend applications. Furthermore, several utilities e. g. for conve-
nient VTK output and tree diagnostics are supplied.

potential via regularized kernels, that are used in fluid simulations with the vortex
particle method [179], to nearest-neighbor search kernels for SPH studies of stellar disc
evolution [219, 220]. Especially the latter application demonstrates the versatility of
the modular concept. It makes use of the possibility to include different force laws and
multipole acceptance criteria within a single backend and uses the tree traversal for
identifying partners for gravitational interaction as well as neighbor particles for the
hydrodynamical near-field interaction. Therefore, the MAC is modified in a clever way
to gather a list of the closest neighbor particles instead of interaction partners.

Among the currently used 14 frontends are applications for electrostatics and strongly
coupled Coulomb systems [104, 176], laser-ion acceleration [169, 171, 272], inclusion of
self-generated magnetic fields via a Darwin model [273, 274], plasma-wall interaction
in Tokamak fusion vessels [275, 276], instabilities in magnetized plasmas [277], the
fluid vortex-method [179] and SPH [219, 220] studies and finally library interfaces for
inclusion of the code in third-party libraries. Furthermore, PEPC has become part
of the highly scalable Coulomb solver library ScaFaCos [156, 180], that is currently
being developed within a BMBF project together with partners from Jülich, Chemnitz,
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Bonn, Stuttgart, and Bielefeld and is recently being used together with parallel-in-time
approaches for even better scalability [278, 279], see Section 5.3.4.

The approach for including periodic boundary conditions for Coulomb systems pre-
sented in Chapter 4 is another good example of the code’s modularity. Being imple-
mented solely for the Coulomb backend, it does not interfere in any way with the
other backends and immediately with its completion, all frontends using this particular
backend were able to make use of it. For example, the fusion-vessel application performs
its simulations on plasma-wall interaction in box that is elongated in one direction and
periodically continued in the other two.

5.3.2 Projected technical optimizations

While the code is optimized for convenient usability and capability to support many
different applications as well as good scalability, single-core optimizations were bypassed
during this development stage. In particular, the efficient use of hardware features, such
as the different memory caches and specialized hardware instructions for rapid floating
point evaluation offers great potential for further performance gain [231–234, 280].

Especially the tree traversal with its large number of floating point operations during
force computation and lots of random memory access would benefit from such advance-
ments. Clearly, other parts of the code can be improved, too. For example, a hybrid
Pthreads/OpenMP+MPI parallelization of the tree assembly phase including the com-
putation of the multipole properties can allow for a more efficient use of the available
hardware. In addition, a task-based parallelization using the new programming concept
SMPSs (SMP Superscalar) based on the hybrid parallelized tree traversal is currently
under development within the framework of the EU TEXT (Towards EXaflop appli-
caTions) [281] and Mont-Blanc [282] projects. The latter aims at porting supercom-
puter applications to extremely energy efficient ARM processors. With the task-based
approach, the programmer defines code sections and data dependencies between them
and a runtime scheduler decides when and even where (e. g. on the main processor, spe-
cialized accelerators such as many-integrated core (MIC) modules or available graphics
processing units (GPU), or specialized energy efficient processors) a task is executed.
This will allow for even better adaptivity to heterogeneous architectures.

5.3.3 Further hybrid parallelism and task-based approaches

As already indicated in Section 5.2.2, by performing a hierarchically parallelized tree con-
struction, the required amount of communication during this stage can be reduced sig-
nificantly. In addition, a thorough study of the properties of the hashing function (3.17)
might reveal that there are better choices available [182]. These can reduce the number
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of collisions and hence access latency and improve memory utilization by avoiding large
unused regions in the address space. Furthermore, additionally allowing cluster-cluster
interactions and then shifting the result towards all child particles instead of only per-
forming particle-cluster interactions can further reduce the necessary number of force
evaluations [198, 202, 203]. In combination with a more adaptive MAC such a modifi-
cation can make the tree code competitive with the fast multipole method with respect
to scaling in total number of particles N if only limited accuracy is requested. This
was shown in [203] for a tree code, that was – in contrast to PEPC – only parallelized
using OpenMP and thus limited to shared memory parallel computers. Ultimately, such
a modification could lead to a two-sided MAC, where either local or remote clusters
are refined depending on the error incurred by the different approximations. While
this will move the algorithm more in the direction of the fast multipole method, it will
still keep all the advantages of the tree code, such as dynamic load balancing, arbi-
trary cell geometry, exchangeable interaction kernel. Dropping the latter feature, an
additional Coulomb backend using spherical expansions instead of the Cartesian mul-
tipoles can allow for arbitrary multipole order which will be a significant advantage for
high-precision computations, where currently ϑ has to be chosen inconveniently small.
Finally, an efficient prefetching during traversal can further reduce communication la-
tency: Based on a worst-case MAC estimation, the receiver of a tree node request
can already decide to send the requested child nodes and possibly some higher-level
additional nodes below that will definitely be needed in a later step of the traversal
anyway.

5.3.4 Additional directions of parallelization

Even when implementing all of the improvements proposed above, every particle-based
simulation code will reach an intrinsic scalability limit when it comes to very small
particle numbers per processor. Then, the amount of work to be done locally is vastly
exceeded by the additional overhead due to parallelization. One approach to make use
over further available computing capabilities and get beyond the weak scaling limit has
been developed during the last few years under the label Parallel-In-Time computation.

Here, in addition to the spatial decomposition that reached its saturation point, another
direction of parallelism is added by distributing the different timesteps to different
processors as demonstrated in Figure 5.12, that extends Figure 5.1b in a natural way.
Therefore, the Parallel Full Approximation Scheme in Space and Time (PFASST) can
be employed [283, 284]. Based on interlaced iterations of Parareal [285] and a Spectral
Deferred Correction (SDC) scheme [286], it is a parallel-in-time solver for initial value
problems

∂u

∂t
= f(t, u), u(t = 0) = u0 , (5.2)
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Figure 5.12: The combination of PEPC with PFASST uses PT × PS nodes. Spa-
tial decomposition for each of the PT time slices is performed by PEPC
using PS nodes within each PEPC-communicator (depicted as one box
in the figure). Within PEPC, one MPI-rank per node is used to act
as data and communication management thread, while the other cores
perform the traversal of the tree using Pthreads, see Section 5.1. For
PFASST, this structure is duplicated PT times to create independently
running instances of PEPC. PFASST connects the ith node of each box
to one new MPI communicator, which results in PS separated PFASST-
communicators for the temporal decomposition, from [278].

which can be applied for the molecular dynamics problem with Newtonian dynamics.
The method considers every timestep as a separate initial value problem that gets its
initial value as the result of the previous timestep. These problems are solved in parallel
starting from approximative solutions to the previous timestep’s problem. Therefore a
coarse time propagator G is used to generate approximative solutions at later points
in time and a fine propagator F is utilized to correct these. While G essentially has
to be evaluated in serial, F is computed in parallel for all timesteps. Hence, good
scalability can be obtained if G is computationally cheap and F is expensive. With its
multipole acceptance parameter ϑ – see Section 3.1.3 – the Barnes-Hut tree code of-
fers the possibility to conveniently choose between fast and precise computation. With
the corresponding choice ϑ(G) � ϑ(F), this combination of the parallel-in-space tree
code PEPC and the parallel-in-time method PFASST has already been demonstrated
successfully, see [278, 279] for details. Actually performing different physics for both
propagators, e. g. a separation of electron and ion dynamics or using hybrid implicit-
explicit integration schemes will go beyond this simple approach and has the potential
to revolutionize parallel molecular dynamics simulations as the otherwise strongly sep-
arated time scales can be studied in a consistent model within one simulation.

5.4 Summary

As shown in this chapter, the hybrid parallelization and modular re-implementation
of the Pretty Efficient Parallel Coulomb Solver that was conducted in this work has
lead to major advancements in scalability and usability of the tree code algorithm for
a multitude of applications. Many minor improvements that evolved out of this way
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lead to further improvements for efficiency and reliability. The code has evolved from
a monolithically closed parallel Coulomb solver to a parallel Barnes-Hut tree al-
gorithm framework that can cope with billions of particles and efficiently make use of
several hundred thousand processors. As a result, it is to the best of our knowledge the
first successful demonstration of utilizing a classical Barnes-Hut tree code on a petas-
cale parallel compute cluster. Previously, it was not known whether this was possible
at all. With its wide portability, the two-layer parallelism and sophisticated inter- and
intra-node load balancing, the code is well prepared for upcoming many-core and even
heterogeneous architectures. Furthermore, the support for periodic and pseudo-periodic
boundary conditions with arbitrary unit-cell shape that has been included during this
work offers the opportunity to bridge the gap from open-boundary microscale systems
to bulk matter within a single simulation code.

Naturally, development is not being stopped at this stage. As already indicated, there
is still space for future prospects. Especially in algorithm sections that played – as
the tree traversal is the dominant part – a secondary role in optimization until now, a
hybrid parallelization approach is required to make use of the available shared-memory
parallelism. Furthermore, the time-parallelism promises a whole dimension for new
developments. However, in the following chapters of this thesis, we will concentrate
on applications. We will first use PEPC to study collective phenomena in confined
nano plasmas in Chapter 6, where the code’s capabilities to efficiently deal with large,
open-boundary systems are particularly advantageous. In Chapter 7, we make us of
the extension to accurate periodic boundaries from Chapter 4 to simulate collisional
heating in bulk matter.
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If light is interacting with metallic nanostructures, it does not only couple to the collec-
tive plasma oscillation as in bulk matter. In fact, there exists a multitude of additional
oscillation modes of the free electrons in the metal which can be excited. These result
from either volume oscillations with selected wave numbers or surface excitations. In
addition, when going from an isolated atom via atomic dimers and clusters of more
and more particles, the quasi-continuous band structure of the metal only evolves grad-
ually [287]. The distinct energy levels of the atom split into two components at the
transition to the dimer and further fragment to a discrete spectrum that is evident for
a finite-size cluster of atoms [288]. Thus, single-electron properties as well as collective
features are modified in nanostructures when comparing to either isolated atoms and
bulk matter. In this respect, nano structures are more than only large molecules and
also significantly different to simple pieces of bulk [287].

Naturally, this difference also appears in their optical properties that can vary signifi-
cantly from those known for infinite systems or solitary atoms. One impressive example
of exploiting these new features is the work of Yu et al. [289, 290]. Using nanostruc-
tured obstacles, they are able to focus the emitted light from a semiconductor laser
more efficiently than before. To do this, they apply a nanostructured, optically thick
gold layer on a dielectric substrate to the emitting facet of the semiconductor. The laser
radiation couples to surface plasmons that – due to a special geometry – start emitting
radiation with high directionality by themselves. The active region of a semiconductor
laser has a size in the order of one wavelength, leading to strong diffraction of the laser
beam when leaving the active zone. With their novel nano-antenna array, Yu et al. are
able to reduce beam divergence from 63◦ to 2.4◦. Occurring effectively lossless [289],
such effects have to potential to revolutionize conventional optics.

During the last few years, a broad field of similar exciting applications for nanostructures
in optics has evolved under the term plasmonics, see [291–294] for recent topical reviews.
In this chapter we study nano clusters as representatives for finite-sized systems that
exhibit interesting spectral features which eventually lead to the development of the
field of plasmonics.
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6.1 Introduction

Motivated by previous studies of Raitza, Reinholz, et al. [132–140], we concentrate
on nano clusters in this chapter. These are defined as particle agglomerates with N =
2 . . . 107 atoms, in the simplest case of a single species [288]. Extensive reviews on
optical properties of such metal nano particles are available in [287, 288, 295]. In the
view of this work, they can be seen as representatives for a multitude of differently
shaped nano- to microscale structures that can be simulated with our highly efficient
parallel tree code PEPC, see Chapter 5. We utilize it for solving the N -body problem
and integrating the trajectories for the cluster electrons and ions as an open-boundary
system with large particle number.

In their analysis, Raitza et al. evaluate the total and spatially resolved electron mo-
mentum auto correlation spectrum, identify the Mie and bulk plasma resonance and
find a cluster size dependent shift of the oscillation spectra. Their simulations are per-
formed with clusters of up to Nel = Nion = 1,000 electrons and ions. In this chapter,
we follow and extend their experiments to 300 times larger systems and propose a con-
siderably simpler approach for identifying spatially resolved oscillation patterns that
correspond to additional resonances found in the spectra. To this end, we describe
the simulation setup and several fundamental cluster properties in Section 6.2. In the
subsequent Section 6.3 we show and discuss the different spectral features observed in
our simulations. Our spatially resolved diagnostic is demonstrated in Section 6.4, where
also the obtained data is discussed in comparison to the findings of Section 6.3.

Results presented in this chapter have been partially published in [296].

6.2 Numerical simulation setup

In order to compare our simulation experiments with work previously done by Raitza
et al. [134], they are performed with an analogous configuration. We consider icosahe-
dral, closed-shell neutral sodium clusters, compare Figure 6.1. These are composed of
Nel = Nion = 55 . . . 293,789 electrons and ions that interacts via the Plummer/soft
core potential (2.16) [104, 149]

Φ(Plummer)(r) = 1
4πε0

· q√
r2 + α2

. (6.1)

In this way we avoid numerical heating, compare Section 2.2.3. Furthermore, we use the
parameter α to model ionization processes. Therefore, we initially place the electrons
in close proximity to their respective ion and adjust the potential cutoff parameter
α = 5.336 aB. For vanishing electron-ion distance, this gives the ground state ionization
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(a) Nel = Nion = 55 (b) Nel = Nion = 309 (c) Nel = Nion = 293,789

Figure 6.1: Icosahedral structure of the studied clusters with different numbers of
electrons and ions (not to scale). For the smallest cluster, some electrons
that left the surface are shown.

energy for sodium

Ve-i(r → 0) = lim
r→0

1
4πε0

· qelqion√
r2 + α2

= −5.1 eV . (6.2)

Thus, we mimic the dissociation Na −−⇀↽−− Na+ + e–. Higher ionization states are not
considered.

The particle trajectories are integrated for physical times t = 0 . . . 290 fs using the highly
scalable parallel Barnes-Hut tree code PEPC as a solver for the underlying N -body
problem, see Chapters 3 and 5. Intrinsically supporting open boundaries, the tree algo-
rithm is perfectly suitable for simulation of isolated, finite-sized particle configurations.
In contrast to bulk systems that can be studied in computer experiments using rela-
tively small setups that are extended to infinity by means of periodic boundaries, the
cluster systems here require open boundaries and large particle numbers. PEPC is able
to simulate configurations from small dimers up to billions of particles in a consistent,
fully-kinetic approach, see Chapter 5. With this capability, closing the gap between
nano- and bulk scale simulations is now possible.

Our calculations were performed on the high-scalability IBM Blue Gene/Q installation
JUQUEEN [268] and the multi-purpose cluster JuRoPa [297] at Jülich Supercomputing
Centre.

We start our simulations with icosahedrally arranged ions and marginally displaced
electrons at solid density nion = nel = 28× 1021 cm−3. The corresponding bulk plasma
frequency is ωpl = 9.43 fs−1. Initially, the particles are frozen at Tion = Tel = 0 K but
are heated by a linearly polarized laser pulse with sin2 envelope. A moderate laser
intensity of IL = 1 × 1013 W/cm2 and a wavelength of λ = 436 nm in the optical range
are chosen. The laser pulse length is set to tpulse = 100 fs to allow for sufficient heating
of the system.
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Figure 6.2: Representative evolution of the simulation experiment for a cluster with
initially Nion = Nel = 2,869 ions and electrons. During tpulse = 100 fs, it
is heated by a laser pulse, that pulls electrons away and hence starts to
charge the cluster. Due to the resulting positive net charge, the ion sphere
expands. At t = tpulse, the ions are fixed. Diagnostics are performed during
the following time t = 100 . . . 290 fs without any external field, with fixed
ionic background and stable ionization degree.

Due to the laser heating, several electrons leave the cluster’s surface. This effectively
leads to a charged cluster as shown in Figure 6.2. With its increasing positive charge
from the excess of ions, the remaining electrons are confined to the inner volume of the
cluster. Only the bound electrons are considered in the present studies on collective
electronic properties inside the nano clusters. In agreement with [136], the cluster size
is defined via the ionic root mean square radius

R
(RMS)
cluster =

√√√√ 1
Nion

5
3

Nion∑
i=1

r
(i)
ion

2
. (6.3)

Here, r(i)
ion is the distance of the ith ion from the cluster’s center of ion mass. Now,

electrons can be considered as free if

rel > R
(RMS)
cluster (6.4)

and

E
(tot)
el = E

(kin)
el + E

(pot)
el > 0 . (6.5)

Firstly, this means they have left the cluster since their distance rel from its center
is larger than the cluster radius. Secondly, they are not moving on a closed orbit
as indicated by non-negative total energy. A detailed empirical study of this cluster
charging process was performed by Broda [298, 299].

Another aspect of the cluster’s positive net charge is its expansion during the heat-
ing stage. Since some compensating electrons are missing, the ion charges cannot be
screened completely, which renders their mutual repulsion to drive them to flying apart.
Naturally, the cluster expansion and electron spill-out modify the average electron den-
sity nel and thus the plasma frequency ωpl. This has to be taken into account in our
simulations.
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In our simulations, beam propagation is not considered. This restricts us to the long-
wavelength limit of a homogeneous external field. Such a simplification might be ques-
tionable for the large clusters in this study with a diameter of up to 2 · R(RMS)

cluster =
27.94 nm ≈ λ/15. However, we only study plasma properties after laser heating when
electrons have reached temperatures of Tel = 1 . . . 3 eV. The actual way of reaching
this heated state is not of primary interest here as the laser is switched off before any
physical diagnostics are performed.

To be able to perform diagnostics of the electronic motion with fixed ionic back-
ground, we freeze the ionic drift at t = tpulse. This approach corresponds to the re-
stricted molecular dynamics scheme of [134]. During the subsequent diagnostics stage
t = 100 fs . . . 290 fs, the electrons interact with each other and with the static ionic
background. With the exception of electron/electron and electron/ion collision, they
can move freely and thus thermalize rapidly as shown in [134].

During the diagnostics stage, we will measure the electrons’ total momentum autocor-
relation function as well as the total potential and force experienced by test particles on
a spherical grid inside the cluster. All simulations are repeated 128 times with different
initial electron positions. With the laser heating that emphasizes perturbations to the
initial conditions we are thus able to perform an ensemble averaging for improved statis-
tics of our measured data. The following two Sections 6.3 and 6.4 present the particular
diagnostics in more detail and discuss simulations results from either method.

6.3 Total momentum autocorrelation function

The total momentum autocorrelation function is closely related to macroscopic proper-
ties such as the dielectric function and the dynamic conductivity in the Drude model.
Thus, it allows for a connection of microscopic simulation observables to the material
properties that are experimentally accessible and were discussed in Section 1.2. In
Section 6.3.1 we summarize this connection to prepare the fundamental basis for our
results and analyses in Section 6.3.2. Finally, Sections 6.3.3 and 6.3.4 discuss the data
obtained.

6.3.1 The dynamical conductivity and its connection to simulation
observables

We study size effects on optical and transport properties in finite nanoplasmas. Here,
the electrons are – due to the excess of ions – confined to a limited region inside the
cluster’s volume. Generalizing Drude theory for bulk matter, see Section 1.3, the
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dielectric function in the long-wavelength limit

ε(ω) = 1−
ω2
pl

ω2
1

1 + iν(ω)
ω

(6.6)

is considered. Via the collision frequency ν(ω) it is connected to the internal conduc-
tivity [94]

σ(ω) =
ε0 ω

2
pl

ν(ω)− iω . (6.7)

As discussed in Section 1.4, a number of theoretical approaches for the collision fre-
quency are available. However, most of them are limited to the weakly coupled regime.
Molecular dynamics simulations do not suffer from such restrictions and thus can help
building a solid data basis also for Γ & 1.

In our simulations, we use a connection of the external conductivity to system ob-
servables via the fluctuation-dissipation theorem [71, 81]. In particular, the external
conductivity can be introduced via

σext(ω) = Ω0

kBT
·
〈
~Jel; ~Jel

〉
ω

= 1
kBT

nele
2

m2
el
·
〈
~Pel; ~Pel

〉
ω
, (6.8)

with the normalization volume Ω0. Here,
〈
~Jel; ~Jel

〉
ω
and

〈
~Pel; ~Pel

〉
ω
are the Laplace

transforms

〈A;A〉ω =
∫ ∞

0
eiωt (A(0);A(t)) dt (6.9)

of the autocorrelation functions

(A(0);A(t)) =
∫ ∞
−∞

A(u) · A(u+ t)du (6.10)

for the total bound electron current ~Jel and momentum

~Pel =
N

(bound)
el∑
k=1

~p
(k)
el (6.11)

where ~p(k)
el is the momentum of the kth bound electron. In the following, we use the

abbreviation

K(ω) :=
〈
~Pel; ~Pel

〉
ω

(6.12)
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for the momentum autocorrelation spectrum. For straightforward evaluation of K(ω),
we use the autocorrelation theorem from Fourier theory [300]. For the function h(t)
and its autocorrelation function (h(0);h(t)) it reads

F
{
|H(ω)|2

}
= (h(0);h(t)) (6.13)

and accordingly
F−1

{
|h(t)|2

}
= (H(0);H(ω)) (6.14)

if h(t) and H(ω) are related via the Fourier transform

h(t) = F {H(ω)} := 1
2π

∫ ∞
−∞

H(ω)eiωt dω , (6.15)

H(ω) = F−1 {(h(t)} :=
∫ ∞
−∞

h(t)eiωt dt . (6.16)

We exploit the fact that we are interested in the Laplace transform of the momen-
tum autocorrelation function, which is identical to the Fourier transform since the
integrand function vanishes for negative arguments. Thus, omitting all normalizing
prefactors and using arbitrary units from here, for K(w) the theorem yields

K(ω) =
∣∣∣F {~Pel

}∣∣∣2 . (6.17)

Since ~Pel ∈ R3, its Fourier transform has to be performed component-wise and is in
general a complex vector F

{
~Pel
}
∈ C3.

As evident from (6.8) with (6.12),
K(ω) ∝ σext(ω) . (6.18)

For a bulk plasma in the long-wavelength limit, it can be shown that the external
conductivity has a Lorentzian shape [94]

σext(ω) =
ε0ω

2
pl ω

ν(ω)ω − i(ω2 − ω2
pl)

(6.19)

that will also be acquired by K(ω) and

Re{K(ω)} ∝
ε0

ω2
pl

ω·ν(ω)

1 +
(
ω2−ω2

pl
ω·ν(ω)

)2 =: K

1 +
(
ω2−ω2

pl
γ

)2 . (6.20)

Accordingly, in a bulk plasma Re{K(ω)} has a distinct resonance at ω = ωpl with a
width γ that is related to the bulk collision frequency ν(ω).

In the following section that shows our simulation results on finite plasma systems, we
will see that several additional resonances appear in the spectrum K(ω). We will use
an expansion motivated by (6.20) to fit and evaluate their positions. Furthermore, we
deduce an explanation for observed resonance shifts.
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6.3.2 Simulation results and fitting procedure for the momentum
autocorrelation function

As discussed in the previous section, in our simulations the total momentum autocor-
relation spectrum K(ω) is calculated from the total electron momentum ~Pel(t) via the
autocorrelation theorem (6.17). In Figures 6.3 and 6.4, we show Re{K(ω)} for differ-
ently sized nano clusters from Nel = Nion = 55 . . . 293,789 electrons and ions. The data
was obtained by performing a Jackknife averaging procedure [301, 302] over the spectra
of all 128 different simulations runs per cluster size. As mentioned before, due to the
initial expansion and electron spill-out, the effective electron density nel and hence the
plasma frequency ωpl varies for the different cluster sizes. The position of the bulk
plasmon resonance as deduced from the measured densities is highlighted in the figures
as the right dashed line.

Being the highest excited frequency in all systems, the rightmost resonance can be iden-
tified as plasma oscillation. With the exception of the two largest systems that clearly
behave bulk-like in this respect, its position is shifted to lower frequencies with respect
to the bulk plasma frequency ωpl. Furthermore, several additional resonances appear.
Their number grows with increasing system size. The lowest-frequency resonance in all
systems is predicted from standard Mie theory [288, 295] at

ωMie = ωpl√
3

(6.21)

for spherical particles, marked as the left dashed line in the graphs. It is often referred
to as surface plasmon since it results from interaction of the electron system with
the cluster surface. It can be derived by considering two hard-sphere distributions of
electrons and ions that oscillate with respect to each other with a small amplitude.
Details as well as theoretical studies also for non-spherical, e. g. rod-shaped, clusters
can be found in [288, 295]. The theoretical position of the surface plasmon (6.21) is
included in Figures 6.3 and 6.4. Again, the lowest-frequency resonances that correspond
to the surface plasmon are consistently found at smaller frequencies than expected in
our simulation data for the smaller systems. This redshift will be further analyzed in
Section 6.3.3.

Starting from intermediate cluster size Nel, Nion ≥ 309, between these well-known reso-
nances, additional peaks are evident in the total momentum autocorrelation spectrum
K(ω). For sizes from Nel,Nion ≥ 28,741 an additional low-frequency resonance appears.
To account for these additional resonances, we fit K(ω) with a linear combination of
modified Lorentzian resonance curves

Re{K(ω)} ≈
Npeaks∑
p=1

Kp ·

1 +
(
ω − ωp
γp

)2
− 3

2

. (6.22)
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(d) Nel = Nion = 923

Figure 6.3: Momentum autocorrelation spectra K(ω) for differently sized nanoclus-
ters. The dots represent the average over 128 distinct runs per cluster
size. Shaded areas correspond to the respective 95% confidence interval.
Red lines are fitted graphs for the spectra. Arrows correspond to reso-
nances found in the spatially resolved study, see Section 6.4. The position
of the bulk plasma frequency ωpl and the surface plasmon ωMie are shown
as dashed lines. Graphs for larger clusters are given in Figure 6.4.
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(c) Nel = Nion = 293,789

Figure 6.4: Same graphs as in Figure 6.3 for larger clusters.
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Nion = 55 Kpl = 8.72
Kp/Kpl 14.77 1.00
ωp[fs] 3.11 4.87
γp[fs] 0.760 0.757

Nion = 147 Kpl = 3.44
Kp/Kpl 28.35 1.00
ωp[fs] 3.58 5.25
γp[fs] 0.470 0.867

Nion = 309 Kpl = 0.63
Kp/Kpl 48.88 3.12 1.00
ωp[fs] 3.92 5.43 6.53
γp[fs] 0.624 0.623 0.255

Nion = 923 Kpl = 0.19
Kp/Kpl 13.46 39.29 4.09 0.61 1.00
ωp[fs] 3.75 4.28 5.38 6.32 7.16
γp[fs] 0.577 0.475 0.615 0.433 0.125

Nion = 2,869 Kpl = 0.05
Kp/Kpl 18.87 37.71 7.42 0.60 0.74 1.00
ωp[fs] 4.07 4.67 5.53 6.70 7.36 7.96
γp[fs] 0.574 0.463 0.600 0.496 0.137 0.068

Nion = 28,741 Kpl = 0.0018
Kp/Kpl 8.49 55.67 19.48 1.50 0.40 0.49 1.17 0.22 0.80 0.34 1.00
ωp[fs] 3.68 5.08 6.15 7.34 8.12 8.44 8.77 8.94 9.10 9.22 9.38
γp[fs] 0.655 0.682 0.646 0.594 0.278 0.201 0.106 0.116 0.064 0.021 0.031

Nion = 293,789 Kpl = 0.00022
Kp/Kpl 0.49 23.34 5.96 0.13 0.22 0.29 0.34 0.32 0.40 0.42 0.25
ωp[fs] 3.58 5.17 6.26 7.53 8.02 8.25 8.42 8.58 8.74 8.90 9.04
γp[fs] 0.568 0.769 0.849 0.559 0.358 0.126 0.126 0.123 0.101 0.065 0.061

Kp/Kpl 0.17 0.25 0.42 1.00
ωp[fs] 9.19 9.32 9.44 9.54
γp[fs] 0.081 0.091 0.061 0.031

Table 6.1: Fit parameters for Figures 6.3 and 6.4. The notation follows (6.22), each
parameter triple corresponds to an identified resonance. Instead of Kp, the
ratio Kp/Kpl is given, where Kpl is the amplitude of the highest-frequency
resonance.

This ansatz is motivated by (6.20) and a similar approach in [134]. However, we modified
the exponent in (6.22) to better reproduce the asymptotic behavior

Re{K(ω →∞)} ∝ ω−3 (6.23)

that was observed in our simulations. The necessity for this modification hints at a
modified high-frequency behavior of the collision frequency due to the choice of a soft-
core potential instead of the Coulomb interaction [83, 91]. The respective fit curves
are also included in Figures 6.3 and 6.4 and satisfactorily approximate the measured
data for all system sizes. The parameters found by the least-squares fit are given in
Table 6.1. Due to applying the modified Lorentzian, the width γ has lost its direct
connection to the collision frequency. However, since we are more interested in the
resonance positions here, this is acceptable.

Since the additional resonances hint to further excitation modes besides the bulk and
surface plasmon, a spatially resolved study is performed in Section 6.4. Hitherto, Sec-
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Figure 6.5: Position of the observed resonances normalized to plasma and Mie fre-
quency in dependence of cluster size (crosses ×). The dashed lines denote
the position of the classical plasma and Mie frequency. Solid lines cor-
respond to the theoretically expected position (6.36). Diamonds � are
values by Raitza [136] for small clusters and an identical setup as in our
simulations.

tion 6.3.3 examines the observed shift of the resonance spectra towards lower frequencies
for smaller cluster sizes quantitatively.

6.3.3 Analysis and theory for the resonance shift

As seen in Figures 6.3 and 6.4, the resonance spectra for the small clusters are consis-
tently redshifted. Figure 6.5 shows the identified resonance positions normalized to the
respective plasma frequency. Here it is clearly visible that the surface and bulk plasmon
are shifted by the same factor which depends on cluster size.

To find a theoretical estimation for the resonance frequencies, we follow [136] and con-
sider an electron distribution that oscillates in front of a fixed ionic background. With-
out loss of generality, linear movement along the z-direction is assumed. Then, the
one-dimensional equation of motion for the displacement z of the electron cloud with
respect to its position of rest is

melNel
d2

dt2 z(t) = Fz(z(t)) , (6.24)
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where Fz is the third component of the restoring force (the x- and y-components van-
ish and the respective positions are constant) and melNel = Mel is the total mass of
the electron cloud that consists of Nel particles with mass mel. Assuming harmonic
oscillations z(t) = z · eiωt and writing the force as gradient of the potential, we find

melNelω
2z = ∂U(z)

∂z
, (6.25)

which after differentiating with respect to z yields

melNelω
2 = ∂2U(z)

∂z2 . (6.26)

The potential can be written as

U(z) =
∫

d3~r nel(r)Vext(|~r − z~ez|) (6.27)

with the electron density profile nel(r) and the external potential of the ion cloud Vext(r).
Both electron and ion distributions are assumed to be isotropic. Hence, the dependency
on position could be replaced by the distance argument r. Insertion into (6.26) yields

ω2 = 1
melNel

∂2

∂z2

∫
d3~r nel(r)Vext(|~r − z~ez|) . (6.28)

The differentiation in (6.28) is only performed with respect to the solitary variable z
and hence can be drawn into the integration. Under the assumption of small amplitudes
z � r, it can be shown that

∂2

∂z2Vext(|~r − z~ez|) ≈
d2

dr2Vext(r) · t
2 + 1

r

d
drVext(r) · (1− t

2) (6.29)

with t = cosϑ and ϑ = ^(~r,~ez). Insertion of (6.29) into (6.28) and integration over
both angular parameters in spherical coordinates yields

ω2 = 4π
3melNel

∫ ∞
0

∫
dr nel(r)

[
r2 d2

dr2Vext(r) + 2r d
drVext(r)

]
. (6.30)

The external potential of the ion cloud can be written as

Vext(~r) =
∫

d3 ~Rnion(|~R|)Φ(|~R− ~r|) (6.31)

with the interaction potential Φ(r) between individual electrons and ions, which is the
Plummer potential (6.1) in our case.

We now assume hard-sphere ion and electron distributions

nion(r) =
nion for r ≤ Rion

0 else
, nel(r) =

nel for r ≤ Rel

0 else
(6.32)
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with radii Rion and Rel, respectively. Insertion of (6.31) with the potential (6.1) and
the densities (6.32) into (6.30) yields after tedious calculations

ω2 = ω2
Mie

2R3
el

{
(R+ −R−)(R2

el +R2
ion + α2)− (R+ +R−)RelRion

}
(6.33)

with

R+ :=
√

(Rel +Rion)2 + α2 , (6.34)

R− :=
√

(Rel −Rion)2 + α2 . (6.35)

This is the surface plasmon resonance frequency a hard-sphere electron distribution
that harmonically oscillates in front of an immobile hard-sphere ion cloud with the
Plummer interaction potential.

For Rion = Rel = R, i. e. equally sized spheres, (6.33) reduces to

ω2 = ω2
Mie

2R3

{√
4R2 + α2(R2 + α2)− α(3R2 + α2)

}
, (6.36)

which for α = 0, i. e. Coulomb instead of Plummer potential, yields

ω = ωMie , (6.37)

as expected for consistency with the well-known theory. The factor 1/
√

3 between sur-
face and bulk plasmon frequency is a geometry-related constant [288, 295]. Since we
also simulate almost-spherical nano particles, despite the resonance shift, this factor is
expected to stay valid. Therefore, we expect the modification of the surface plasmon
that is given by (6.36) also to apply for the bulk plasmon.

In Figure 6.5, the solid lines were computed using (6.36) for ωMie and ωpl. Both are
consistent with the measured data and the resonances found by Raitza [136]. Only
for the smallest nano cluster with Nion = Nel = 55, an additional blue-shift appears.
Obviously, the approximation of small oscillation amplitudes in comparison to cluster
size is not valid any more.

6.3.4 Conclusions

In this section, we measured the total electron autocorrelation spectra for differently
sized nano clusters. Besides several additional features, they show the expected bulk
plasmon and Mie resonances. These are redshifted due to the Plummer/soft core
potential that is used in our simulations to avoid numerical heating and mimic ionization
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6.4 Spatially resolved studies of the electronic resonances

effects. An analogous shift was also observed by Raitza et al. who used and error
function potential

Φ(erf)(r) = 1
4πε0

· q
r

erf
(
r

λ

)
(6.38)

where the parameter λ was also adjusted to yield the ground state ionization energy
of sodium for r → 0. We can explain this shift of the resonance spectrum consistently
using a simple model of oscillating spherical charge clouds as long as the oscillation
amplitude is small compared to the cluster size.

Besides either plasmon resonances, the simulation data and fits to the spectra in Fig-
ures 6.3 and 6.4 show a multitude of additional excitations. Especially, the larger
clusters exhibit an extensively structured spectrum of resonances between ωMie and ωpl
and even below ωMie. Since they do not correspond to the classical surface and bulk
plasmon, in the following section we perform a spatially resolved study of collective
phenomena inside the cluster’s electronic subsystem.

6.4 Spatially resolved studies of the electronic
resonances

As seen in the previous section, a large number of additional resonances appear in the
total momentum autocorrelation function K(ω) for increasing cluster size. These are
not explained by the standard, long-wavelength Mie theory. The assumption, that the
resonances between ωMie and ωpl result from additional excitation modes with finite
wave number seems natural. To actually localize the origin of the different spectral
features, we performed a spatially resolved study on collective phenomena inside the
cluster. The fundamental idea of our diagnostics is described in Section 6.4.1 before in
Section 6.4.2 the data obtained is discussed.

6.4.1 Spatially resolved field spectra

In [138–140], Raitza et al. perform a spatially resolved analysis for a spherical nan-
ocluster with Nel = Nion = 1,000 electrons and ions. Therefore, they study bilocal
momentum correlation spectra

Ka;a′(ω) =
∫ ∞

0
dtKa;a′(t)eiωt (6.39)

with the correlation matrix

Ka;a′(t) = 1
Va,Va′

(
~Jel(a,0); ~Jel(a′,t)

)
. (6.40)
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6 Collective electronic properties in nano clusters

In this notation, the indices a,a′ correspond to cells of a spherical grid that covers the
whole cluster volume. The volume-normalized total electron current ~Jel(a,t)/Va in every
cell and at every instant in time is used as a simulation observable. This is done in full
analogy to the formalism in Section 6.3. The eigenvectors of the matrix Ka;a′(ω) can
be considered as excitation patterns. They are further analyzed in [138–140] by means
of a spherical Fourier transform to separate the different oscillation modes.

In our simulations, this diagnostic showed significant sensitivity to noise and limited
spatial resolution. In particular, for the smaller clusters grid cells are often unoccupied.
Then, ~Jel(a,t) cannot be determined reliably for them. This is why we use a much
simpler and more direct diagnostic here.

Clearly, the self-consistent electric field experienced by each individual particle is the
driver for any collective or non-collective motion inside the cluster. Hence it is natural
to exploit it as the simulation observable. In particular, we use the electric potential
instead of the field since it is – as an integrated variable – expected to be even less
susceptible to noise. To this end, in addition to evaluating the forces from electrons
and ions onto all electrons, we also compute the electric potential Φ(~ra) on the nodes
~ra of a spherical grid that is embedded into the cluster. This can conveniently be done
using our tree code implementation by performing an additional tree traversal for the
grid node positions through the tree that is constructed from the electrons and ions
anyway, see Chapters 3 and 5.

We are interested in time correlations, i. e. frequency resolved observables. These are
obtained by performing a Fourier transform

Φ̃(ω,~ra) = Re{F {Φ(t, ~ra)}} (6.41)

for every grid node separately to keep the locality information. This spatially resolved
potential spectrum is averaged over all 128 individual simulation runs per cluster size
again, yielding the graphs shown in the central plot of the left column in Figures 6.6
to 6.12 that will be discussed in the next section. For the purpose of preparing these
graphs, an angular average of Φ̃(ω,~ra = (ra, θa, φa)) for fixed cell distances ra from the
cluster’s center in the form

Φ̃(ω, ra) = 1
NθNφ

Nθ∑
iθ=1

Nφ∑
iφ=1

Φ̃(ω, ra, θ(iθ), φ(iφ)) (6.42)

has been performed. Note that the normalizing factor sin θ is missing as it did not
yield a significant difference in our case. The individual, differently colored lines in the
plots correspond to different, fixed values for ra. For blue lines, ra = 0, while for dark
red lines ra = rcluster. thus, peaks of blue lines correspond to resonant movement in
the inner cluster region while resonances at its surface show as features in the dark red
lines. Dashed lines mark the position of the bulk and surface plasmon again. For better
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Figure 6.6:
Results of the simulations for a
cluster of initially Nel = Nion = 55
electrons and ions. the graphs to
the left show from top to bottom:
the total momentum autocorrela-
tion function K(ω) from Figure 6.3
for comparison; the potential spec-
trum (6.42) for fixed radii, iden-
tified resonance peaks are marked
with arrows; the radial dependence
of the potential spectrum for the
identified resonance fixed frequen-
cies. On the right, the spatially re-
solved, φ-averaged excitation pat-
terns for the resonance frequencies
are shown. The color coding and
further details are given in the text.
The dodecagonal shape of the exci-
tation pattern graphs is an artifact
of limited grid resolution Nθ = 6.
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Figure 6.7:
Same graphs as in Figure 6.6 for a
cluster with initially Nel = Nion =
147 electrons and ions.
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Same graphs as in Figure 6.6 for a
cluster with initially Nel = Nion =
309 electrons and ions.
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Figure 6.9:
Same graphs as in Figure 6.6 for a
cluster with initially Nel = Nion =
923 electrons and ions.
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Figure 6.10:
Same graphs as in Figure 6.6 for a
cluster with initially Nel = Nion =
2,869 electrons and ions.
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Figure 6.11:
Same graphs as in Figure 6.6 for a
cluster with initially Nel = Nion =
28,741 electrons and ions.
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Figure 6.12:
Same graphs as in Figure 6.6 for a
cluster with initially Nel = Nion =
293,789 electrons and ions. Due to
limited spatial resolution, several
resonances overlap.
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6 Collective electronic properties in nano clusters

comparability, the momentum autocorrelation spectra from Figures 6.3 and 6.4 are also
included as the top left graphs in Figures 6.6 to 6.12.

Since with both diagnostics different observables with different normalization are eval-
uated, a direct comparison of peak heights is not possible. However, their position
already yields enough information for an extensive discussion and comparison in the
next section. The resonance positions that are identified in the spectra from the spa-
tially resolved study are indicated by gray arrows at the upper edge of both graphs in
the figures.

6.4.2 Analysis of the spatially resolved spectra

In the spatially resolved study, numerous resonances are evident that can directly be
related to those found in Section 6.3. In particular, the Mie and bulk plasmon can
be identified immediately. Many peaks between both resonances can also be found in
the graphs for both studies. However, the spectra of Φ̃(ω, ra) reveal a large amount
of additional peaks that are not visible in the spectra for K(ω). Clearly, these have
to correspond to oscillation modes with vanishing total momentum and hence K(ω) =〈
~Pel; ~Pel

〉
ω

= 0.

The line colors in the graphs of Φ̃(ω, ra) already indicate a strong connection between
resonance frequency and distance from the cluster center. This is becoming even more
evident when considering the lower left plots in Figures 6.6 to 6.12. There, the radial
dependence of (6.42) is shown for fixed values of ω that correspond to the identified
resonance positions (gray arrows in the other graphs). In these plots, black lines cor-
respond to ω ≈ ωMie, olive lines to ω ≈ ωpl. As expected, for all cluster sizes Mie
contributions result from the cluster’s surface and oscillation with ωpl is observed in
its central, bulk-like region. Intermediate frequencies are mostly related to collective
oscillation in simple shell regions, i. e. for fixed distance from the center as particularly
prominent for Nel = Nion = 55 . . . 309.

Starting from Nel, Nion ≥ 923, some oscillation modes exhibit a multi-peak structure.
For example, there are two peaks visible for ω = 6.67 fs−1 in the lower left graph of
Figure 6.9. This is evidence for oscillations with finite wave number. Going towards
larger systems, more and more of such excitations appear. This results from more
discrete wave numbers to fit into the nano plasma region that is confined to the cluster.

The angular resolved excitation patters

Φ̃(ω, ra, θa) = 1
Nφ

Nφ∑
iφ=1

Φ̃(ω, ra, θa, φ(iφ)) (6.43)
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are shown in the right columns of Figures 6.6 to 6.12 for the same frequencies as in the
lower-left graphs and indicated by gray arrows. There, collective behavior corresponds
to violet color, off-resonant oscillation is shown in light blue to white.

The excitation patterns support the hypothesis of higher, non-trivial excitation modes.
However, they cannot be explained a higher modes in a classical fluid model with
appropriate boundary conditions as in that case the dispersion relation ω2 = ω2

pl + s2k2

would – in analogy to the Bohm-Gross case (1.15) – suggest resonances with ω >
ωpl [303]. The observed resonances feature complex and (mostly) isotropic oscillation
that can be seen as radial plasma waves with different wave numbers. In addition, few
non-isotropic modes appear, e. g. at ω = 9.21 fs−1 and ω = 9.38 fs−1 for Nel = Nion =
28,741 and ω = 9.54 fs−1 for Nel = Nion = 293,789. They have a droplet or dumbbell
shape and break the intrinsic symmetry of the system. Their origin is still unclear.
However, they can simply originate from the non-spherical cluster shape. Especially
for the very large systems, the radial symmetry is strongly broken by the flat faces
and sharp edges of the icosahedral particle setup. Here, comparisons with spherical
configurations and hence preserved radial symmetry are necessary.

Finally, another interesting feature can be understood using the spatially resolved data.
For the larger cluster, in the total momentum autocorrelation spectrum a solitary peak
was observed far below the Mie frequency, see Figure 6.5. There, its origin could
not be explained. This resonance also appears in the study of Φ̃(ra, ω), for example
for Nel = Nion = 28,741 in Figure 6.11 at ω = 3.37 fs−1. The respective excitation
pattern exhibits only weak resonance regions at the very outer edge of the cluster
where the diagnostics region ends. Apparently, an electron that orbits outside the
system influences a potential oscillation here. Since such electrons are considered as
bound to the cluster, they are included in the total momentum that finally yields K(ω)
and appear as resonances there.

6.5 Summary

In this chapter, we analyzed collective oscillations in finite nano cluster systems with
sizes of Nel = Nion = 55 . . . 293,789 electrons and ions by means of molecular dynamics
simulations using our tree code PEPC. We evaluated the total momentum autocorrela-
tion spectrum for the electronic subsystem and applied a new technique to identify the
spatial origin of resonance phenomena in nanoclusters. The surface and bulk plasma
resonances were identified in using either method and their redshift for lower cluster
sizes has been explained consistently. Furthermore, the spatially resolved potential
spectra were utilized to accurately pinpoint the origin of the observed additional reso-
nances for the first time. They essentially reproduced the resonance positions from the
autocorrelation spectra but also showed some additional peaks which are interpreted as
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6 Collective electronic properties in nano clusters

vibrational modes with vanishing total momentum that by construction cannot be seen
using the former method. As verified via inspection of the spatially resolved oscillation
patterns for the resonance frequencies, the additional peaks correspond to excitation
of distinct shells inside the cluster and finite wave number oscillation in the confined
nanoplasma. Furthermore, oscillation patterns that break the spherical symmetry were
found and attributed to the non-spherical shape of the particle configurations in this
study.

The results from this section should provide guidance and additional impetus to further
analyze the absorption spectra of metallic nano clusters by means of theory and exper-
iment. In addition, a comparison with the latest spatially resolved studies for small
systems by Raitza et al. [139, 140] and comparative computations using the recently
developed MicPIC method [304, 305] are desirable. Furthermore, a detailed analysis of
the excitation patterns could help constructing a spatially dependent dispersion relation
inside the cluster that is be relevant for understanding optical and transport properties
of isolated clusters as well as finite nanoplasmas in colloidal suspensions and on surfaces.
Nanostructured targets for laser-matter interaction experiments are already available
and nanoelectronics is rapidly developing towards the scales studied here. There, similar
novel exciting applications as the application of plasmonics in optics in the introductory
example by Yu et al.[289] can be expected.
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7 Collision frequency in bulk plasmas

As summarized in Chapter 1 there exist numerous models on Inverse Bremsstrahlung
heating in bulk matter, but experimental data that can be directly compared to theo-
retical results is still scarce. Molecular dynamics simulations can close this gap to some
extent by providing data from computer experiments which can be tuned to assump-
tions and parameter ranges covered by the theories. The effective collision frequency
is a key parameter when studying optical and transport properties such as absorption
coefficient and conductivity, as shown in Section 1.3. It will be studied in this chap-
ter using classical molecular dynamics simulations for high-intensity fields in strongly
coupled bulk matter. To do this, in Section 7.1, we formulate the connection from the
plasma heating rate as a simulation observable to the collision frequency. The details on
simulation setup and workflow are given in Section 7.2. Since we calculate the heating
rate for fixed sets of plasma conditions (nel, Tel), it is difficult but necessary to keep tem-
perature constant while measuring the heating rate in these simulations. Appropriate
methods to achieve this are discussed in Section 7.3 before we present our simulation
results in Section 7.4.

7.1 The plasma heating rate

In order to retrieve the dynamical collision frequency for the electron-ion system in the
simulation, a connection to the plasma heating rate is required. For completeness, the
cornerstones of the derivation are given here, which borrows freely from the argumen-
tation of [51].

As shown in Section 1.3, the ac-conductivity is given in the Drude model via

σ(ω) =
ε0ω

2
pl

−iω + νei
, (7.1)

so that the dielectric function reads

ε(ω) = 1− σ(ω)
iωε0

= 1−
ω2
pl

ω(ω + iνei)
, (7.2)

where the electron-ion collision frequency νei has originally been defined via the electron-
ion relaxation time τei = 1/νei as in Sections 1.3 and 1.4, see [43–45, 47, 306].
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We start from the dispersion relation (1.32)

k2 c2 = ω2 ε(~k,ω) . (7.3)

Neglecting non-local effects in the following, the long-wavelength limit of the dielectric
function ε(ω) = lim|~k|→0 ε(~k,ω) will be considered. Then, with (7.2)

ω2 = k2 c2 + ω2
pl

(
1− iνei

ω

)
(7.4)

is obtained in the high-frequency limit ω � νei. Rewriting (7.4) with a complex fre-
quency

ω = ωr − iν2 , (7.5)

the imaginary part is a damping factor for the wave with the damping rate

νE = 1
〈uL〉

∂

∂t
〈uL〉 (7.6)

and the field energy density uL. This can be seen by considering the energy density

uL = 1
2ε0

(
| ~E|2 + c2| ~B|2

)
(7.7)

with | ~E| = c| ~B| for an electromagnetic wave [35], the complex frequency (7.5) and a
plane wave (1.31), so that

uL = ε0| ~E|2 = ε0E
2
L · e2i(~k·~r−ωt) · e−ν·t (7.8)

and

νE = − 1
〈uL〉

∂

∂t
〈uL〉 = − 1

〈| ~E|2〉
∂

∂t
〈| ~E|2〉 = ν . (7.9)

Insertion of (7.5) into (7.4) again in the high-frequency limit yields

ω2
r − iνEωr = k2 c2 + ω2

pl − i
νeiω

2
pl

ωr
, (7.10)

which after separation of real and imaginary part gives

ωr =
√
k2 c2 + ω2

pl , (7.11)

νE =
ω2
pl

ω2
r

νei . (7.12)
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7.1 The plasma heating rate

Clearly, the energy loss of the external field due to electron-ion collisions leads to an
increase of system energy, since the electrons’ oscillatory trajectories are converted to
randomized motion due to collisions. Thus, the increase of total system energy Usys is

d
dtUsys = − d

dt〈
∫
uLdV 〉 , (7.13)

where the integral of the laser energy density is performed over the complete system.
From (7.9) with constant system volume,

d
dtUsys =

∫
νE〈uL〉dV . (7.14)

Then making use of (7.12) and assuming spatial homogeneity, the expression

d
dtUsys =

ω2
pl

ω2
r

νei · ε0〈| ~E|2〉 (7.15)

is obtained. The mean value 〈. . .〉 represents averaging over a cycle, which – for har-
monic waves (1.31) in the long-wavelength limit – gives

〈| ~E|2〉 = 1
2E

2
L . (7.16)

In the simulated system of N particles,

Usys =
N∑
i=1

Ui = N · U (7.17)

with the average particle energy U , so that (7.15) can be recast into the form

νei = ω2

ω2
pl
· 2
ε0E2

L
· n · ddtU , (7.18)

where n = N/V is the particle density. Using

vosc = e

m

EL

ω
, (7.19)

vtherm =
√

3kBT
m

=
√

2Etherm

m
, (7.20)

another useful expression

νei = v2
therm
v2
osc
· 1
Etherm

d
dtU (7.21)
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can be derived. Both expressions (7.18) and (7.21) are ready-to-use tools for deducing
the electron-ion collision frequency through measuring the increase of average thermal
energy per particle during the simulation.

Since averaging over a full cycle is necessary when computing the particles’ kinetic en-
ergy or temperature, any laser- or configuration-induced drift will have to be subtracted
appropriately. The latter may arise from non-uniform ion placement in the simulation
box that induces large-scale oscillations with spatial extent � λD. Drift correction can
be performed for example via

3
2kBT = m

2
(
〈|~v|2〉 − |〈~v〉|2

)
, (7.22)

where averaging over all particles of the considered single species – here electrons – is
performed.

It is worth noticing, that via Poyntings theorem [35], the energy conversion rate is
also connected to the microscopic current ~j via

νE = 〈~j · ~E〉
ε0〈| ~E|2〉

. (7.23)

This is the usual approach for microscopic theories for νei.

7.2 Simulations on the heating rate in hydrogen
plasmas

7.2.1 Simulation setup

For measuring the heating rate νE due to external radiation, we consider a neutral
hydrogen plasma at different densities, temperatures and with varying frequency ωlaser
and intensity I ∝ v2

osc of the externally applied linearly polarized laser radiation. The
latter parameters are chosen from the range

ωlaser

ωpl
= 0.1 . . . 100.0 (7.24)

to sufficiently sample both the low- and high-frequency limits and
vosc
vtherm

= 0.1 . . . 20.0 (7.25)

to cover a broad intensity range from the Dawson-Oberman limit [56] vosc � vtherm to
the high-intensity limit studied by Silin [58]. In agreement with the available theoreti-
cal data, the force from the external radiation is only applied to the system’s electrons.
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7.2 Simulations on the heating rate in hydrogen plasmas

nel [cm−3] Tel [eV] 0.1 0.5 1 2 5
1× 1018 Γ = 2.32 0.46 0.23 0.12 0.05

Θ = 27 137 274 548 1371
1× 1020 Γ = 10.8 2.15 1.08 0.54 0.22

Θ = 1.27 6.36 12.7 25.5 63.7
1× 1022 Γ = 10.0 5.00 2.50 1.00

Θ = 0.30 0.59 1.18 2.95

nel [cm−3] Tel [eV] 7.7 10 33 50 100
1× 1018 Γ = 0.03 0.02 0.01 0.005 0.002

Θ = 2111 2742 9050 13712 27424
1× 1020 Γ = 0.14 0.11 0.03 0.02 0.01

Θ = 98.0 127 420 636 1273
1× 1022 Γ = 0.65 0.50 0.15 0.10 0.05

Θ = 4.55 5.91 19.5 29.5 59.0

Table 7.1: Densities and temperatures used in the simulations in this work.

Ions are not directly affected. This is also justified by the time-scale of ionic motion
which, thanks to the mass ratio mion/mel = 1,836, is significantly longer than that of
the electronic motion. Although this is similar to an adiabatic approximation, ions are
allowed to gain additional energy and momentum due to collisions with electrons during
the simulation. Hence, some fraction of the laser energy absorbed by the electron is
transferred to ionic motion. For the sake of energy and momentum conservation in the
simulation, fixing the ionic background is not an option here. Clearly, this transferred
energy also has to be considered when measuring the system heating rate as described
in Section 7.3.

The temperature and density values under consideration are given in Table 7.1 together
with the respective values for the coupling parameter Γ and the degeneracy parameter
Θ, defined by (1.7) and (1.8).

With Θ . 1 especially the near-bulk density case nel = 1× 1022 cm−3 requires quantum
effects to be taken into account. This is done through utilizing the Kelbg potential, a
modification to the classical Coulomb interaction. Details are given in Section 7.2.2.
Afterwards, Section 7.2.3 will describe the actually used particle configurations, numer-
ical setup, and simulation workflow.
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7 Collision frequency in bulk plasmas

7.2.2 Kelbg potential

Naturally, the pure Coulomb potential (1.27) is not usable for the simulation of
electron-ion interactions in dense systems. Due to the constrained timestep granu-
larity, particles can approach each other closely. Thus, the potential’s singularity at
r → 0 leads to an unphysical heating that would render any attempt of heating rate
measurement futile. Accordingly, the singularity has to be removed. Furthermore, as
already seen in Table 7.1, with Θ . 1, quantum effects start to play a role in the selected
parameter region.

Derived from a two-particle Slater sum, the Kelbg potential [307–310]

Φ(Kelbg)(rij) = qiqj
4πε0

·

 1
rij

1− e
−
r2
ij

λ2
ij

+
√
π

λij

(
1− erf r

λij

) (7.26)

lim
rij→0

Φ(Kelbg)(rij) = qiqj
4πε0

·
√
π

λij
(7.27)

removes the singularity at r → 0 due to Heisenberg’s uncertainty effect (see Fig-
ure 7.1) and already includes quantum correlations [4]. Since (7.26) is a perturbation
theoretical expansion in the interaction parameter (charge) e2 → 0, it is in general only
valid for low to moderate coupling [4]. However, even in the region Γ & 1, it still delivers
an acceptable regularization of the Coulomb potential and is hence also applied there.

The parameter

λij = ~√
µijkBT

(7.28)

is the thermal wavelength with the reduced mass [308]

µij =
[

1
mi

+ 1
mj

]−1

. (7.29)

The relevant species in our simulations are electrons and ions/protons. Thus, three
combinations (i,j) ∈ {(e,p), (p,p), (e,e)} have to be considered separately.

For r/λ > 2, the Kelbg potential smoothly approximates the Coulomb interaction,
see Figure 7.1. In our simulations, we make use of the fact, that (7.26) is only a
near-field correction to the Coulomb law. Instead of performing and including a full
multipole expansion of Φ(Kelbg) into our tree code, we only replace (near) particle-leaf
interactions, that were treated with the pure Coulomb expression otherwise, with the
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Figure 7.1: Comparison of Kelbg (solid red line) and Coulomb (dashed green line)
potential as well as the Kelbg near- (dash-dotted red line) and far-
field (dashed red line) contribution separately. For brevity, qiqj

4πε0
1
λ

= 1
is set in the plot. Being finite at the origin (with the convention above
Φ(Kelbg)(r → 0) =

√
π) the Coulomb singularity is removed by using the

Kelbg expression. In addition, the frequently used Plummer potential
Φ(Plummer)(r) ∝ λ√

r2+λ2 , see also (2.16) is shown as dashed blue line.

Kelbg interaction and its respective expression for the force

~F (Kelbg)(~rij) = qiqj
4πε0

1− e
−
|~rij |

2

λ2
ij

 ~rij
|~rij|3

, (7.30)

lim
r→0

~F (Kelbg)(r · ~eij) = qiqj
4πε0

~eij
λ2
ij

. (7.31)

This introduces a discontinuity of the forces for distances where interactions with par-
ticle clusters through their multipole expansion start to appear. However, such discon-
tinuities are evident anyway due to the different levels of accuracy when interaction
with clusters at different tree levels are considered and does not lead to an enhanced
numerical heating, see Figure 7.2. Also, momentum conservation is not found to be
violated by this approximation.
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Figure 7.2: Comparison of total energy over time for Kelbg and Coulomb potential
to verify energy conservation. See Figure 4.6 for the numerical setup. The
different interactions yield different potential energy. Accordingly, the
total energy is modified when exchanging the potential. Only for ϑ > 0.3
a significant energy drift is observed for the Kelbg interaction. This
results form the fact, that the Kelbg potential used in the near-field is
not continuously matched to the far-field Coulomb interaction. Thus, as
we are using ϑ = 0.3, see also Section 3.1.3, numerical heating will not
spoil our results.

7.2.3 Simulation workflow

Simulations are performed for an overall neutral two-component plasma in a cubic
simulation region that is periodically continued as described in Chapter 4. To obtain
sufficient statistics even for small heating rates, particle numbers are chosen between
Nel = Nion = 5,000 . . . 2,500,000 electrons and ions. Depending on system size, the cal-
culations are done on the general purpose cluster JuRoPa [297] and the high-scalability
IBM Blue Gene/Q system JUQUEEN [268] on up to 16,384 processor cores.

A typical simulation scenario is shown in Figure 7.3 for a configuration of Nel = Nion =
5,000 electrons and ions. The method is similar to that of [103]. After being initialized
with Maxwellian velocities at equal temperatures Tel = Tion, the system is in a non-
equilibrium state due to the randomly assigned particle positions. Accordingly, the
potential energy is inevitably too high, but the system rapidly adjusts by seeking a
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7.2 Simulations on the heating rate in hydrogen plasmas

lower potential energy state, accelerating and thus heating the electrons. Due to the
mass ratio mp ≈ 1,836mel between protons and electrons, the ions are mainly not
affected here. A relaxation to thermal equilibrium is not possible within the next few
femtoseconds and a two-temperature plasma is evident during this phase I. In phase II,
a thermostat is applied to both species separately to obtain a defined equilibrium state
at the desired temperature again. It is deactivated in the next phase III which is used
to verify energy conservation before switching on the external laser in phase IV.

After activating the external harmonic field, the electron kinetic energy starts to oscil-
late with doubled laser frequency due to the laser-induced collective motion. During
this oscillation, the electrons undergo collisions with the ions that are – compared to
the electron velocity – essentially at rest. Due to these collisions, some fraction of the
directed electronic oscillation is converted into random omnidirectional motion. Con-
sequently, the drift-corrected electron kinetic energy U

(electrons)
kin, w/o drift that corresponds to

the systems temperature (7.22) shows a steady increase. The energy transfer to the
ions due to the collisions is negligible. Consequently, their kinetic energy and hence
temperature stays approximately constant.

The electronic heating due to collisions is exactly the process to be studied with our
simulations. As shown in Section 7.1 using (7.18) or (7.21), the rate of energy transfer
is used to determine the electron-ion collision frequency νei. Since this should ideally be
done at fixed plasma conditions, in particular for Tel = const, the next section describes
thermostat algorithms that allow for measuring heating rates at constant temperature
and proposes an additional alternative scheme of measurement.

139



7 Collision frequency in bulk plasmas

0 1 2 3 4 5
t[fs]

0

2

4

6

8

E
n

e
rg

y 
[R

y]

I II III IV

U (total)
pot

U
(electrons)

kin

U
(ions)

kin

U
(total)

kin

U
(electrons)

kin,w/o drift

U(tot)
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after its activation,
the laser leads to a
rapid heating of the
electrons.

Figure 7.3: Typical simulation scenario as used in this chapter, here for Nel = Nion =
5,000 electrons and ions with identical initial temperatures and densities
nel = nion = 1 × 1022 cm−3. Due to the non-equilibrium random particle
configuration, during phase I until t = 1.25 fs, a rapid decrease of potential
energy and thus heating of the electrons is observed. To reach a single-
temperature plasma in equilibrium, in phase II (t = 1.25 . . . 2.25 fs) a
thermostat is applied. During phase III until t = 3.5 fs, it is deactivated
to verify energy conservation. At t = 3.5 fs the external harmonic field
with vosc/vtherm = 0.2 and ω/ωpl = 3.0 is activated leading to a considerable
heating of the electrons in the system. Their total kinetic energy oscillates
with doubled laser frequency. Due to collisions, their collective oscillation
is converted to random motion which shows as an increase of the drift-
corrected kinetic energy. The slope of this increase corresponds to the
heating rate νE.
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7.3 Method of measurement

As seen in Section 7.1, the electron-ion collision frequency for the particle systems under
consideration can be computed from the particle heating rate, which is a measure for
the actual energy transfer into the system. Since the collision frequency is known to be
strongly dependent on temperature T already in leading order [48, 51]

νei ∝
n

T 3/2
(7.32)

with the particle density n, measurement of the heating rate during the simulation is a
delicate process. As seen in Figure 7.3, the system is considerably heated by the incident
laser. Consequently, either the measurement has to be performed instantaneously by
computing the value and gradient of the temperature curve at every instant in time, or
by keeping the temperature artificially constant through some thermostat algorithm.
In the latter case, the energy that is drained from the system through the thermostat
has to be measured. Both strategies entail various advantages and drawbacks, that will
be summarized in the following.

7.3.1 Constant-temperature simulations

Conserving particle number N , simulation volume V , and system energy E, standard
methods of molecular dynamics simulations in general sample the phase space of a
microcanonical ensemble. In contrast, macroscopic experiments usually are subject
to the canonical ensemble, where instead of total energy the system temperature T
is externally fixed, e. g. via a heat bath, or even the isothermal-isobaric ensemble,
where volume can vary to keep the pressure P constant. Consequently, numerous
different methods have been developed to fix the mean kinetic energy, which is system
temperature. For the purpose of fixing the temperature during laser irradiation in the
conducted simulation experiment, two of these were used: the Berendsen thermostat
that introduces artificial friction and theNosé-Hoover scheme based on virtual scaling
of the physical time, which can also be interpreted as extending the Lagrangian of
the system to include a virtual heat bath. Both are briefly summarized in the following
paragraphs to evaluate their applicability in the simulations.

From velocity rescaling to artificial friction – The Berendsen thermostat

The most obvious technique for fixing the particle temperature is a linear scaling

~vi(t)→
√

T0

T (t) · ~vi(t) (7.33)
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7 Collision frequency in bulk plasmas

of every particle’s velocity to obtain the desired mean kinetic energy. Here, T (t) is
the instantaneously measured, uncorrected temperature and T0 its desired value. This
method was first proposed by Woodcock [311]. It conserves total linear and angular
momentum while strictly fixing the mean kinetic energy per particle. By construction,
fluctuations of the temperature are not allowed here. However, in the canonical en-
semble, temperature does fluctuate [9, 145]. One way to allow such fluctuations is to
introduce a friction term into the equations of motion [312], which leads to the damped
force method [313]

d
dt~vi = 1

mi

(
~Fi − α~vi

)
(7.34)

with particle velocities ~vi and forces ~Fi and an appropriately chosen constant α. If,
with the temperature definition

3
2(N − 1)kBT =

N∑
i=1

mi

2 |~vi|
2 (7.35)

the temperature T is required to remain constant
d
dtT = 0 , (7.36)

then

α =
∑N
i=1

~Fi · ~vi∑N
i=1 ~vi · ~vi

(7.37)

is obtained. This approach maintains the canonical distribution [312, 314]. Due to the
formal constraint of fixed total momentum, the system in (7.35) has 3(N − 1) instead
of 3N degrees of freedom.

For inclusion of the force damping to fix the system temperature at T = T0, the velocity
step of the leap-frog integrator (2.11) is modified as follows [313, 315]. Firstly, an
unconstrained velocity half-step

~v′i(t) = ~vi(t− ∆t/2) + 1
mi

~Fi(t) · ∆t/2 (7.38)

is performed to get an estimate of the projected temperature at time t. Then, with

β = 1
1 + α

m
∆t/2

=

√√√√ 3(N − 1)kBT0

m
∑N
i=1 |~v′i(t)|2

(7.39)

the full velocity step reads

~vi(t+ ∆t/2) = ~vi(t− ∆t/2) · (2β − 1) + β

m
~Fi(t) ·∆t . (7.40)
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Thus, in contrast to the trivial velocity rescaling, the forces are also rescaled in this
damped force approach with a leap-frog integrator.

The choice of (7.39) with (7.38) guarantees the desired temperature at instant t. How-
ever, being essentially a linear rescaling process, the temperature compensation tends
to overshoot for t + ∆t/2. This leads to an undesired oscillation between too high and
too low average kinetic energy at times t−∆t/2 and t+ ∆t/2. Due to this non-continuous
behavior, initial temperature perturbations are not damped but carried along as a hid-
den artifact. This can be circumvented by allowing the system to relax to the desired
temperature within a larger time-span instead of forcing the relaxation to happen imme-
diately during the next timestep. The actual way of damping the system temperature
towards its desired value is given in [316, 317], where particle velocities are rescaled
from ~v to λ~v with

λ =

√√√√1 + ∆t
τ

[
T0

T (t) − 1
]
, (7.41)

which in (7.34) corresponds to [318]

α = 1
2τ

[
T0

T (t) − 1
]
. (7.42)

Here, T (t) is the measured uncorrected temperature and τ can be interpreted as a
relaxation time, so that

d
dtT (t) = T0 − T (t)

τ
. (7.43)

Clearly, temperature is not constrained immediately in this scheme. Instead, the system
slowly develops towards T0 via corrected temperatures T (t). Thus, as long as the
temperature deviations are small enough, no overshooting appears and without external
perturbations, T0 will be reached while temperature fluctuations are still allowed.

This constant temperature approach can also be used to permanently remove energy
from the laser-irradiated system that is heated by the external field. We want to
use (7.21) to determine the electron-ion collision frequency. Therefore, the amount
of heat, i. e. inner energy that is removed from the system through the thermostat has
to be measured. Although d

dtU is directly connected to β and α, respectively, in the
current implementation the projected velocities ~v′i(t), see (7.38), and corrected velocities
~vi(t) are used to compute the uncorrected temperatures T (t) and their corrected values
T (t). These velocities can be determined by performing the integration in half-steps.
Using the Berendsen approach of slow temperature relaxation, it is important to note
that T (t) is in general not equal to T0. Then,

d
dtU ≈

∆U
∆t = 3

2NkB
T (t)− T (t)

∆t (7.44)
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Figure 7.4: System energy per particle for a homogeneous neutral plasma with Nel =
Nion = 5,000 particles (left). The simulation workflow follows Figure 7.3
with the difference that with activation of the external field at t = 3.5 fs, a
separate Berendsen thermostat is applied to each species. This keeps the
electron and ion temperature constant. The amount of energy Σ∆U (e) +
Σ∆U (i) that is drawn from both subsystems per particle (right) is fit with
a linear function (dashed line). The graph of the fit function lies much too
close to be distinguishable from the data. The inset that shows an excerpt
for times t = 5.0 fs . . . 6.5 fs allows for an overview of the actual deviation
between fit and simulation data.

is a measure for the amount of energy that is converted per timestep from directed
laser-driven drift to undirected motion. Again, it is important that T (t) and T (t) only
contain drift-corrected velocity contributions as given in (7.22), since the laser-induced
oscillation is clearly not allowed to contribute here.

Being a stochastic property, ∆U/∆t has to be measured over several laser and plasma
periods (whichever is longer) to yield reliable results. This can be done conveniently by
accumulating ∆U , i. e. collecting all energy that has been removed over time

Σ∆U(k ·∆t) :=
k∑
i=0

∆U(i ·∆t) . (7.45)

The slope of Σ∆U yields d
dtU .

This process is shown for an example setup in Figure 7.4. Here, a homogeneous neutral
plasma system with Nel = Nion = 5,000 particles and Tel = Tion = 10 eV is heated by
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an external electric field with vosc/vtherm = 0.2. During its first phases, the workflow is
identical to Figure 7.3. However, in this case, the thermostat is now active in stage
IV, i. e. after the laser has been switched on at t = 3.5 fs, and the drift-corrected
electron kinetic energy remains constant. The laser-induced oscillation is still visible.
The amount of energy converted from collective drift to random undirected motion can
be seen in the graph of Σ∆Uel, that represents the accumulated energy drawn from the
electron subsystem.

Though not being directly affected by the laser, due to electron-ion collisions the ionic
subsystem is also heated. With their significantly larger mass mion ≈ 1,836mel, this
process is considerably slower than for the electrons, but still visible in the simulations.
To ensure definite fixed physical conditions, a second thermostat is applied to the plasma
ions and their heating is also included in the calculation of the total heating rate.

Using a linear regression for Σ∆Uel + Σ∆Uion in Figure 7.4, the system heating rate
d
dtU can be identified as the slope of the linear fit. With (7.18) or (7.21), the collision
frequency can then be computed. Results – also in comparison with other thermostat
and heating rate measurement approaches – are given in Section 7.4.

The Nosé-Hoover thermostat

Besides the velocity rescaling and damped-force approach, another popular and suc-
cessful method of introducing constraints on thermodynamic observables in molecular
dynamics simulations is due to Nosé, who originally formulated it for constant pres-
sure [319, 320] and later for constant temperature dynamics [321, 322]. In this approach,
an additional degree of freedom s is introduced, that takes the role of an external heat
bath. Its interaction with the physical system is defined via a scaling of the momenta
~pi = mis

2~̇ri. With the potential energy (f + 1)kBT0 ln s, where f is the number of de-
grees of freedom of the original system and T0 its desired temperature, and the kinetic
term p2

s

2Q , the total system Hamiltonian

HN =
N∑
i=1

~p2
i

2mis2 + U({~ri=1...N}) + p2
s

2Q + (f + 1)kBT0 ln s (7.46)

is a conserved quantity. With the kinetic term and the virtual momentum ps, a dynamic
equation for s can be constructed. Obviously, theQ parameter is analogous to a classical
mass, though it has units of energy · time2. It is used to influence the rapidity of heat
exchange dynamics between the system and the heat bath. The partition function

Z = 1
N

∫
dps

∫
ds
∫

dN~p
∫

dN~r δ
(
HN − E(ext)

)
(7.47)
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with the extended system energy E(ext) can be integrated after the substitution ~pi/s = ~p′i
and using δ(f(s)) = δ(s−s0)

|f ′(s0)| if s0 is the only zero of f(s), see [145, 322–324]. This yields

Z = 1
f + 1

√
2πQ
kBT0

e
E(ext)
kBT0 · Z(can) (7.48)

with the canonical partition function

Z(can) = 1
N !

∫
dN~p

∫
dN~re

H(~p′,~r)
kBT0 (7.49)

and the physical (real system) Hamiltonian

H(~p′,~r) =
N∑
i=1

~p′2i
2mi

+ U({~ri=1...N}) . (7.50)

Thus, with (7.48) a canonical ensemble is sampled when deriving dynamic equations
from (7.46) under the assumption of ergodicity.

In the original formulation of Nosé, s can be interpreted as a parameter that scales
every timestep [321, 322]. This is clearly undesirable in a molecular dynamics simulation
that relies on equidistant sampling of the time domain. Using the non-canonical change
of variables

~p′i = ~pi
s
, dt′ = dt

s
,

1
s

d
dt′ s = d

dt′η , ps = pη , (7.51)

and f = 3N − 1 due to the fixed temperature, the equations of motion

d
dt~ri = ~pi

mi

,

d
dt~pi = ~Fi −

pη
Q
~pi ,

d
dtη = pη

Q
,

d
dtpη =

N∑
i=1

~p2
i

mi

− 3NkBT0

(7.52)

can be derived after removing the primes from all variables.

Though being non-Hamiltonian, this set of variables still samples the canonical phase
space, but now in the real physical variables including time. The newly introduced
variable η is general not necessary for the physical evolution. It plays an important
role in the analysis of the phase-space distribution [325] and will also appear in the
Hamiltonian of the extended system which is used for evaluation of the heating rate.
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The reformulation (7.51) of the original approach was introduced by Hoover [326]
and has since become part of the standard toolbox in molecular dynamics. The set of
dynamic equations (7.52) are thus labeled Nosé-Hoover equations.

As before, there is an additional friction term in the physical momentum equation
in (7.52) that – depending on its sign – can also act as an acceleration. Again, its dy-
namic is driven by the instantaneous difference between current and desired temperature
value. In contrast to the Berendsen thermostat, the heat bath is now intrinsically
included in the formalism. Thus – despite the temperature rescaling in the physical
system – the extended system Hamiltonian that together with (7.51) reads

HN

(
{~ri=1...N}, {~pi=1...N}, η, pη

)
= H ({~ri=1...N}, {~pi=1...N}) +

p2
η

2Q + 3NkBT0η , (7.53)

is an integral of motion. Hence its conservation allows for verification of the approach
itself as well as numerical correctness in the implementation.

It can be shown that Nosé-Hoover dynamics violates ergodicity for small and stiff
systems [326, 327] and several attempts were made to circumvent this problem, e. g.
in [325, 328]. The most popular approach by Martyna et al. introduces further
extended system variables η2, pη2 that act as thermostats for η = η1 and pη = pη1 .
This guarantees the latter to be Maxwell-Boltzmann distributed again and finally
builds a hierarchical chain of thermostats, since also η2 and pη2 have to be thermally
distributed. Otherwise leading to an infinite so-called Nosé-Hoover chain [145, 324,
325], this hierarchy has to be truncated after adding M thermostat momenta. The
choice of M = 1 reduces to the original Nosé-Hoover dynamics and will be used
within this work, since only large nonstiff systems are studied. Here, an early truncation
of the chain is appropriate without considerably violating the canonical ergodic sampling
of phase-space.

A formulation of Nosé-Hoover chain dynamics with the leap-frog integrator (2.10)
and (2.11) has already been given in [329]. However, relying on an iterative procedure
for determination of the particle and extended system momenta, it violates time reversal
symmetry and increases computational cost in the integrator. A later approach in [330]
solves the former issue, leading to an even more elaborate algorithmic concept. Thus,
a much simpler method was chosen for this work. It essentially includes the extended
system variables of the Nosé-Hoover chain into the leap-frog scheme [331]. In the
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formulation with velocities instead of momenta it reads

d
dt~ri = ~vi , (7.54)
d
dt~vi = ~ai({~ri=1...N})− vη1~vi , (7.55)
d
dtvη1 = aη1({~vi=1...N})− vη2~vη1 , (7.56)
d
dtvηk = aηk(vηk−1)− vηk+1~vηk , k = 2, . . . ,M , (7.57)

where ~ai = ~Fi/mi are the usual (force-driven) physical accelerations and the Nosé ac-
celerations are given via

aη1({~vi=1...N}) = 1
Q1

(
N∑
i=1

mi~v
2
i − 3NkBT0

)
, (7.58)

aηk(vηk−1) = 1
Qk

(
Qk−1v

2
ηk−1
− kBT0

)
for k = 2, . . . ,M (7.59)

and the Nosé positions satisfy

d
dtηk = vηk . (7.60)

Now, the two sets Sx = {~ri, η2k, vη2k−1} and Sv = {~vi, η2k−1, vη2k} with i = 1, . . . , N and
k = 1, . . . ,M/2 are defined. All members of Sx are computed on full timesteps t and
members of Sv on the half timesteps t± ∆t/2 in the sense of the leap-frog scheme.

For M = 1 as in this work, the Nosé-Hoover leap-frog algorithm according to [331]
can be reduced to

~ri(t) = ~ri(t−∆t) + ~vi(t− ∆t/2) ·∆t
vη1(t) = vη1(t−∆t) + aη1(t− ∆t/2) ·∆t

~vi(t+ ∆t/2) = ~vi(t− ∆t/2) · e−∆tvη1 (t) + ~ai(t) ·∆t · e−∆t/2vη1 (t)

η1(t+ ∆t/2) = η1(t− ∆t/2) + vη1(t) ·∆t

aη1(t+ ∆t/2) = 1
Q1

(
N∑
i=1

mi~vi(t+ ∆t/2)2 − 3NkBT0

)
.

(7.61)

Hence, only a minor modification of the original integrator from Section 2.2.2 is neces-
sary.

It should be mentioned that the algorithm of [331] is not undisputed, see [332]. For
certain simulation setups it is not as energy-conserving as the approach of [330]. How-
ever, it was shown that this does not pose a problem onto realistic scenarios [333] and
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that both approaches can even be derived from a similar factorization of the Liouville
propagator [334]. In the present simulations, conservation of total energy is explicitly
checked by performing test runs with vanishing laser intensity and was found to be
satisfied by (7.61).

As seen before, compare Section 7.1, the system heating rate and thus the change in total
energy is the quantity of interest for determining the electron-ion collision frequency.
From (7.53) it can be seen that the heating of the system, which results in an increase
of total system energy and hence H, will also lead to an increase in HN . Thus, even
although the thermostat permanently drains energy from the physical system to keep
its temperature constant, all changes in HN only reflect the energy transfer from and
into the full system including the heat bath.

For computing HN , knowledge of all phase-space variables at full timesteps t is nec-
essary. Since members of Sv are only defined at the intermediate half steps t ± ∆t/2,
their values at t have to be computed explicitly. Performing from (7.61) one half step
backwards,

~vi(t) = 1
2
[
~vi(t+ ∆t/2)

(
1 + e∆tvη1 (t)

)
− ~ai(t) ·∆te∆t/2vη1 (t)

]
, (7.62)

η1(t) = η1(t+ ∆t/2)− vη1(t) · ∆t/2 (7.63)

is found. Accordingly, HN(t) can conveniently be evaluated after performing the posi-
tion and velocity update in the simulation.

The only free variable in the Nosé-Hoover thermostat approach is the choice of the
relaxation parameters Qi. According to [325], the optimal choice is

Q1 = 3NkBT0 · τ 2 , (7.64)
Qi=2...M = kBT0 · τ 2 . (7.65)

Here, τ is the characteristic temperature relaxation time scale. Clearly, in addition
to being small enough to sufficiently compensate for heating due to the external field
and large enough to avoid parasitic oscillation, the relaxation timescale also has to be
chosen off-resonant with any internal system frequencies, such as the plasma frequency
ωpl, the laser frequency ωlaser and their possible beat modes. Keeping this constraint in
mind, in the present simulations,

τ ≈ 20 ·∆t (7.66)

was chosen, though, no significant influence on the overall heating rate was found with
other choices.

Figure 7.5 shows the same setup with Nel = Nion = 5,000 particles and Tel = Tion =
10 eV as in Figure 7.4. Here, instead of the drained energy, the extended system Hamil-
tonianHN that includes the energy transferred to the heat bath is observed. As before,
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Figure 7.5: System energy (left) and extended system Hamiltonian HN (right) per
particle for the identical setup as in Figure 7.4 with a Nosé-Hoover
thermostat. Again, the (dashed) linear fit function to the total extended
system Hamiltonian H(e)

N +H(i)
N lies too close to the simulation data to

be distinguishable. The inset shows an excerpt for times t = 5.0 fs . . . 6.5 fs
to get an idea of their proximity. The slope of the fit is identical to that
of Figure 7.4, yielding the same heating rate as with the Berendsen
thermostat.

heating primarily occurs in the electronic system. The extended system Hamiltonians
for the electronic and ionic subsystem H(e)

N and H(i)
N strongly fluctuate. However, their

sum H(e)
N + H(i)

N shows a nearly linear line as expected for a constant heating rate.
Consequently it is presumable that a considerable energy exchange between ions and
electrons occurs and influences their kinetic and potential energy. Again, the total ex-
tended system Hamiltonian H(e)

N +H(i)
N is evaluated for the heating rate measurement.

Now, besides the kinetic contributions, it also contains the potential energy. Hence,
even a hypothetical increase in correlation energy due to the laser-plasma interaction
could be covered by this approach. As before, the slope of a linear fit of H(e)

N + H(i)
N

yields the overall system heating rate d
dtU .

Either presented thermostat approach offers the possibility of measuring the heating
rate in a canonical ensemble conveniently and with only small modifications to the
particle trajectory integrator. Keeping the physical conditions essentially fixed, they
furthermore allow for straightforward averaging over a long period of time with constant
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7.3 Method of measurement

vosc/vtherm. Additionally, from the linear regression error, an estimate for the statistical
uncertainty can be derived.

The thermostat approach is an appealing method for making use of ergodicity and
replacing ensemble averages by a time average that is realized by means of a linear
fit to the drained energy/total HN . However, it is limited to a slightly non-intuitive
discrete sampling of the temperature domain. For every set of temperatures Tel, Tion, a
full simulation run has to be performed. In the next section, an alternative simulation
scheme is proposed that allows for sweeping through temperature ranges by making use
of the laser-induced heating that is already present anyway.

7.3.2 Instantaneous heating rate measurement

In the previous section, two approaches for simulations at constant temperature were
presented. These allow for determination of the collision-driven plasma heating rate
at distinct points in the NV T -parameter space. However, this approach itself is quite
cumbersome. In fact, it is not necessary to really fix the particle temperature and
then determine the heating rate by means of accumulating the energy that is drained
from the system. Instead, a natural approach would be to let the system heat up and
determine the heating rate d

dtU directly from the slope of the temperature curve without
artificially cooling the system again. With this approach, that was also proposed in [103]
but has not been followed further, a range of system temperatures can be swept during
a single simulation. Clearly, this method does not need any modifications to the particle
dynamics itself. By not imposing any artificial constraint, it is significantly closer to
the real physical system that is simulated.

Figure 7.6 gives a pictorial view of how this is actually implemented. It shows the
drift-corrected kinetic energy per electron after laser activation and coefficients that are
derived from that for an example simulation withNel = Nion = 5,000 particles and initial
temperatures of Tel = 1.0 eV and Tion = 1,000 K and densities nel = nion = 1×1022 cm−3.
The laser frequency is ωlaser = 3ωpl. These parameters are the same as in simulations
performed in [103]. The according data is included for comparison in Figure 7.6d. As
we will compare our simulation results to the data of [103] extensively in Section 7.4,
we postpone any discussion of the observed data.

As already seen in Figure 7.3, without a thermostat the system is substantially heated by
the external field. To reduce stochastic fluctuations when evaluating the time derivative,
the heating curve in Figure 7.6a is fitted by a smooth analytic expression. Therefore, a
piecewise cubic spline function U (spline)(t) has proven to be suitable. Figure 7.6b shows
its derivative d

dtU
(spline)(t) – the heating rate. Using the inverse function of U (spline)(t),

the explicit dependence on time t can be replaced by a temperature parameter and
using (7.21), the temperature-dependent collision frequency νei(T ) can be computed,
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Figure 7.6: Demonstration of the instantaneous heating rate measurement for a sys-
tem with Nel = Nion = 5,000 particles and initial temperatures of
Tel = 1.0 eV and Tion = 1,000 K and densities nel = nion = 1 × 1022 cm−3.
These parameters correspond to similar simulations and theoretical con-
siderations in [103]. Data from that publication is included in Figure 7.6d
for comparison.
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see Figure 7.6c. With a final variable transformation from temperature to the coupling
parameter Γ, see (1.8), a comparison with the results from [103] is possible and already
shows adequate consistency.

Despite being a very promising approach for determination of the heating rate, this does
not come for free. Especially in the region of the upper and lower temperature boundary,
the resulting heating rate is not completely reliable. For the very small temperatures
directly after the step-like laser activation, the electrons will not immediately move
harmonically. Hence reliable heating rates might not be observed during the first few
laser periods. This leads to an underestimation of the heating rate during the first
time of measurement. Finally, in the high-temperature region, the timestep conditions
(compare Section 2.2.3) that are only checked at simulation start-up by setting an
appropriately small timestep are approached or even overrun due to the significantly
higher particle velocities in the hot system. Thus, also when approaching very high
temperatures, care has to be taken when interpreting collision frequencies from such a
run. A corresponding artifact can be seen at Γ = 0.3 in Figure 7.6d, where νei seems
to suddenly decrease faster than before. However, both issues can be mitigated by
performing simulations with different initial temperatures to cover the low-temperature
region and small enough timestep to also treat the high-temperature region correctly.
A good compromise is to avoid covering broad Γ ranges with a single simulation, but
to bridge them with a number of shorter temperature sweeps instead. In addition, it is
expedient to exclude heating rates obtained during the first laser periods.

One more important issue is the question of keeping vosc/vtherm constant during one sim-
ulation run. Although this is not the real physical picture, since the laser intensity will
not follow the system temperature but will stay constant during the heating process,
the available data and theoretical models for comparison are usually only available for
vosc/vtherm = const. This is a rather artificial convention compared to real experiments
were the material is heating up while laser intensity is kept as constant as possible.
However, for comparability we adhere to this convention. Therefore, the laser inten-
sity in simulations with this method is adjusted after every laser cycle appropriately.
Then, (7.9) does not have to modified since (7.16) is still valid for every individual cycle
and with the instantaneous measurement of the curve’s slope, the change of EL between
the cycles does not influence the derivative. For preserving validity of the theoretical
foundations, we mitigate vosc/vtherm = const, though, since intensity adjustment is not
performed immediately after a temperature change but after the laser cycle is finished.
In a consequent implementation, this should be done in every timestep, but then the
derivative in (7.9) would also include contributions of change of the amplitude EL. Al-
though no significant difference was seen in exploratory simulations for either method,
an instantaneous intensity adjustment would spoil the sinusoidal shape of the external
field’s oscillation and hence make the applicability of the derivation in Section 7.1 at
least questionable.
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7 Collision frequency in bulk plasmas

The final drawback with this method is the question of statistical fluctuations, making
the measurement less precise and reliable than the long-term average from Section 7.3.1.
Clearly, this is true. However, again assuming ergodicity of the system, the time-average
can also be replaced by an ensemble-average, which can be assumed to be appropriate for
sufficiently large particle numbers. This is precisely what is available using significantly
improved tree code method introduced in Section 5.1. With it, fully kinetic simulations
with in total up to two billion particles are possible.

Since these mentioned drawbacks of the method have not been thoroughly evaluated
until now, both techniques – constant temperature and instantaneous heating rate mea-
surement – are used in this work. The respective results are given in the following section
and differences are discussed where appropriate.
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7.4 Simulation results

In the first parts of this chapter, we discussed the connection between the collision
frequency in warm dense matter and the plasma heating rate, described the simulation
setup and workflow, and showed different methods for actually determining the plasma
heating rate at defined sets of conditions (nel, Tel). Together with the implementation
of periodic boundary conditions of Chapter 4, these are the basis for the simulation
results given in this section. We will concentrate the discussion of our results on three
commonly studied dependencies. First, the scaling of the collision frequency with the
coupling parameter Γ will be discussed in Section 7.4.1. Afterwards, we evaluate the
dependence of νei on laser frequency in Section 7.4.2, and will finally approach scaling
with the field amplitude, i. e. vosc/vtherm, in Section 7.4.3.

7.4.1 From weak to strong correlations – scaling with the
nonideality parameter

The scaling of νei/ωpl as a function of the nonideality parameter Γ is shown in Figure 7.7.
There, our simulation results are compared to data and analytical results from different
methods published by several authors. Keeping in mind that Γ � 1 corresponds to
the weak coupling regime of an ideal gas, here the results of the different theories and
simulations have to be consistent. This is the case and can be interpreted as a very
fundamental cross-check for validity of our simulations.

Error bars given in the Figure denote the 95 % confidence region that was determined
from the linear fit to H(e)

N +H(i)
N , as in Figure 7.5 for each simulation run, i. e. for every

data point in the plot, separately. As we have long-running simulations covering up to
several hundreds of laser cycles and large particle numbers of up toNel = Nion = 2.5×106

electrons and ions, we obtain statistics at least an order of magnitude better than
previous work to date. These statistical errors are not the only source of uncertainty,
though. As we start our simulations with uncorrelated, randomly placed ions, they
do not have a distinguished configuration as it would be the case for strongly coupled
Coulomb crystals for example. Accordingly, our simulations correspond to essentially
setting the ionic structure factor to unity as it is done in many theoretical approaches.
To get an estimate of the influence of the actual ionic structure, several simulations
for identical plasma parameters but different initial particle positions will have to be
performed in future. In addition, a thorough study on the phase transition from the
Coulomb liquid to a crystal is indicated. We will take this idea up again briefly in
Section 8.2.

When approaching the regime of stronger coupling Γ & 1, theories and simulation re-
sults start to differ. The analytic approach of Decker et al. is not applicable here
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Figure 7.7: Normalized electron-ion collision frequency νei/ωpl for a fully ionized hy-
drogen plasma with nel = nion = 1 × 1022 cm−3 in a weak harmonic
external field vosc/vtherm = 0.2 with frequency ω/ωpl = 3.0. Among our
results, published data by several authors for the same plasma param-
eters is included. The data points correspond to simulations by Hilse
et al. [103] and Pfalzner and Gibbon [104] as well as theoretical com-
putations with a HNC structure factor by Cauble and Rozmus [69].
Curves represent analytic results from Grinenko and Gericke [105],
Bornath et al. [101], and Decker et al. [17]. In addition, the polariza-
tion contribution as derived in [105] is given separately. Our simulations
were performed using a Nosé-Hoover thermostat as described in Sec-
tion 7.3.1, error bars denote the 95 % confidence region from the linear
fit to H(e)

N + H(i)
N as in Figure 7.5. Due to the good statistics from the

simulations runs with large particle numbers up to 5 × 106, these errors
are of the order of 1.5 %.
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as the Coulomb logarithm (1.48) becomes negative rendering the theory invalid for
Γ & 1. Our simulation results are in good correspondence with the analytical results
of Bornath et al. [101] who evaluated the collision frequency based on a quantum
kinetic approach. It is fundamentally very similar to the starting point of Decker
et al. but – as expected when going from classical to quantum mechanical expressions
– does not need artificial integration cutoffs for the Coulomb logarithm (1.48). In-
stead, convergence if the k-space integral is ensured by additional exponential factors
in the integrand that can be interpreted as quantum diffraction effects, see [101] for
details. Similar values for νei/ωpl are also reported by Grinenko and Gericke [105]
if only the polarization contribution is considered. It does not account for hard col-
lision contributions ν(hc)ei that are an additive term to νei in their theory. These are
dealt with an analogy to stopping power theories and yield the difference between the
Grinenko curves in the figure. As [105] does not contain extensive details on their
approach for ν(hc)ei but concentrates on the polarization contribution, an evaluation is
difficult here. A hint might come from the data of earlier simulations of Pfalzner
and Gibbon [104]. In contrast to our present simulations, they used a Plummer/soft
core interaction, see (2.16) and Figure 7.1, instead of the quantum-mechanical Kelbg
pseudopotential (7.26). Unfortunately, no information on their choice of the interaction
cutoff parameter is available. Obviously, collisions are emphasized for Γ & 1 in their
simulations when compared to the present data. However, as the Kelbg potential is in
general only valid for the weakly coupled case (see Section 7.2.2) it is only used as a reg-
ularization for the Coulomb potential with automatic choice of the cutoff parameter
as a function of the thermal wavelength (7.28). Hence, it might also – due to consider-
able potential screening – underestimate collisional effects due to hard collisions. This
interpretation matches the coincidence with the data of Grinenko and Gericke if
hard collisions are omitted in their approach. Clearly, studies in the sensitivity of the
strong-coupling dependence of νei on the choice of the potential and potential cutoff
parameters would be necessary to clarify this point.

To finalize the discussion in Γ dependence, Figure 7.8 compares the results of the instan-
taneous heating rate measurement method, Section 7.3.2 to the data points obtained
with the constant-temperature simulations via application of a Nosé-Hoover ther-
mostat, Section 7.3.1. The results of the instantaneous measurement mutually coincide
for the different simulation runs. However, there are deviation visible at the high-
temperature/low-Γ endpoints of the individual curves. There, the collision frequency
appears to start increasing again. This can be attributed to numerical heating due to
an insufficient simulation timestep. The time discretization is adjusted according to the
constraints described in Section 2.2.3 with the initial temperature in our simulations.
While the respective limits stay valid during the full run of a constant-temperature
simulation, they get violated as the system is heated in the instantaneous measurement
scheme. Thus, for improving the low-Γ tails of the curves, an adaptive time stepping
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Figure 7.8: Comparison of νei/ωpl from instantaneous heating rate measurement as de-
scribed in Section 7.3.2 with values obtained using the Nosé-Hoover
thermostat approach from Section 7.3.1 for the same physical parameters
as in Figure 7.7.

would be necessary, which is technically possible, see [217] and Section 3.4, but has not
been implemented within this work.

With the exception of these high-temperature endpoints, the continuously measured
curves agree with the constant-temperature data. This can primarily be attributed to
the very good statistics due to the large particle numbers that renders the time averaging
unnecessary. In fact, this allows one to sweep across a temperature range instead of the
discrete sampling done until now with conventional molecular dynamics simulations.
Thus, the large particle numbers available using the tree code approach open the range
for more natural simulations that really follow the experimental interaction scenario and
are not restricted to only probe the instantaneous state of an experiment for statistics
purposes.

7.4.2 Dynamic behavior of the collision frequency

The dynamic behavior, i. e. frequency dependence of νei from our simulations is shown
in Figures 7.9 and 7.10 for two different temperatures Tel = Tion = 2.0 eV and Tel =
Tion = 7.7 eV and fixed densities nel = nion = 1× 1022 cm−3. It is compared to the real
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Figure 7.9: Dynamic behavior of the collision frequency for a fully ionized hydrogen
plasma with nel = nion = 1×1022 cm−3, Tel = Tion = 2.0 eV, vosc/vtherm = 0.2,
Γ = 2.5, Θ = 1.18, i. e. a moderately coupled, weakly degenerate system.
Triangles represent simulation data, error bars denote the 95 % confidence
interval from the linear fit for H(e)

N + H(i)
N . Curves give the theoretical

behavior for moderately coupled systems with arbitrary degeneracy from
a quantum statistical treatment in different approximations [81, 83, 89, 91,
94]. They straight gray line denotes the asymptote ∝ ω−7/2 which is the
expected high-frequency scaling of νei(ω) with the Kelbg potential [83]
but is not observed here as the rightmost data point is still at a moderate
frequency ω/ωpl = 20.

part of the collision frequency from a quantum statistical approach given by Reinholz,
Wierling, Röpke et al. [81, 83, 89, 91, 94]. In Figure 7.9, the different contributions
to their Gould-DeWitt scheme are shown separately. The method includes strong
collisions via a statically screened T-matrix approach as well as the dynamically screened
Born approximation (Lenard-Balescu collision term). With this technique, near
and far collisions are treated consistently. However, it is limited to moderate coupling
Γ . 4 [335] which is fulfilled for both parameter sets in this comparison. The Lippman-
Schwinger equation for the T-matrices and integrals for the statically screened Born
and dynamically screened Lenard-Balescu contributions were solved numerically
with a program set by Millat [83] that was parallelized [84] and has been ported
to the Blue Gene/Q system JUQUEEN recently.
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Figure 7.10: Collision frequency from simulations and Gould-DeWitt technique for
nel = nion = 1 × 1022 cm−3, Tel = Tion = 7.7 eV, vosc/vtherm = 0.2, Γ =
0.65, Θ = 4.55, i. e. a weakly coupled, classical plasma. For details
see Figure 7.9. As the available data points reach ω/ωpl = 50, the high-
frequency asymptote is reached in this case.

While Figure 7.10 shows very good agreement of simulation and theory for ω/ωpl . 20,
results in Figure 7.9 differ significantly. This difference can be attributed to quantum
effects that arise as Θ approaches unity. They are included in the theory but are only
dealt with via a pseudopotential approach in the simulations. This results in differ-
ent treatment of potential screening and near-field cutoff and apparently overestimates
collisions in this parameter range. Comparably enhanced collision frequencies in com-
parisons of simulations to this theory were also found for different plasma parameters
in other studies [91, 94].

The different behavior of theory and simulation at high frequencies is another artifact of
the choice of interaction potential. As shown by Millat [83], utilization of the Kelbg
potential leads to an asymptotic behavior

νei(ω) ∝ ω
−7/2 for ω →∞ . (7.67)

For the standard Coulomb potential,

νei(ω) ∝ ω
−3/2 for ω →∞ (7.68)
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is expected and also reproduced by the analytic expressions [83, 91, 92, 94]. For com-
parison, an asymptote ∝ ω−7/2 is included in Figures 7.9 and 7.10 and well reproduced
in the latter where the simulated frequencies reach up to ω/ωpl = 50.

7.4.3 Dependence on field amplitude

In addition to correlation effects due to strong coupling, i. e. high densities and low
temperatures, we are also interested in the field amplitude dependence of the collision
frequency. The high-field behavior of optical and transport properties in warm dense
matter is is of particular interest today as with the construction and operation of free
electron lasers worldwide, this regime becomes accessible for experiments. As seen in
Figure 1.2, today’s installations are already reaching the range of vosc/vtherm & 1 for high
frequencies ω/ωpl � 1 at bulk densities and are in fact able to actively probe the warm
dense matter regime. A fundamental theoretical approach including nonlinearity effects
due to vosc/vtherm � 1 is given by Silin [58]

ν
(Silin)
ei = 32

√
2πnel qelqion
m2

elv
3
therm

(
vosc
vtherm

)−3
· Q

(
vosc

2vtherm

)
· L (7.69)

with
Q (r) :=

∫ ∞
0

z2 e−z2 [I0(z2)− I1(z2)
]
dz (7.70)

where In(z) is the modified Bessel function of first kind [163] and L is the Coulomb
logarithm (1.48). In the low-field limit, this result corresponds to the well-known Daw-
son-Oberman collision frequency [56], but for strong fields decreases as

νei

(
vosc
vtherm

)
∝
(
vosc
vtherm

)−3
for vosc

vtherm
→∞ . (7.71)

This scaling is clearly reproduced by our simulations, as shown in Figure 7.11a. There,
the expressions by Dawson and Oberman and Silin are plotted in comparison to
our simulation results for two parameter sets with nonideality Γ = 0.1 and Γ = 2.5,
respectively. As the Coulomb logarithm and thus (7.69) becomes invalid when ap-
proaching Γ & 1, the analytical curves haven been shifted to overlap with the data
in the high-field limit by scaling L . Accordingly, we have to restrict our discussion to
qualitative features such as the curves’ overall shape instead of absolute values.

However, we can also interpret our shift factors for the collision frequencies in the
simulations at nion = nel = 1 × 1022 cm−3 as a scaling that corrects the Coulomb
logarithm which would give too low values for the collision frequencies otherwise. The
respective factors for ν(Silin)ei from (7.69) are

ν
(simulation)
ei = 12.117 · ν(Silin)ei at Tel = 2 eV , (7.72)
ν
(simulation)
ei = 1.667 · ν(Silin)ei at Tel = 50 eV (7.73)
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Figure 7.11: Collision frequency for a fully ionized hydrogen plasma with nel = nion =
1× 1022 cm−3 and temperatures Tel = 2.0 eV (Γ = 2.5) and Tel = 50.0 eV
(Γ = 0.65) at ω/ωpl = 3.0 in dependence of quiver velocity and quiver
amplitude, respectively. Lines are theoretical curves by Dawson and
Oberman [56] (dotted), additional Langdon correction [64] (dashed)
and Silin [58] (solid).
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7.4 Simulation results

and thus renormalize the Coulomb logarithm for the selected set of parameters.

The expected asymptotic behavior in the high-field limit is observed for both parameter
sets. Compliance between theory and simulation in the low-field limit is only found
for Tel = 2.0 eV, though, which is surprising as the colder plasma corresponds to the
stronger coupled regime. However, also in this case there is a significant deviation from
the Silin results towards lower values around vosc/vtherm ≈ 2. In contrast, an enhanced
collision frequency is observed for vosc/vtherm . 2 in the hotter system Tel = 50.0 eV.

In [104], a reduced collision frequency found around vosc/vtherm ≈ 2 was attributed to
the Langdon effect – deformation of the Maxwellian distribution function due to
insufficient electron-electron relaxation [64]. This correction, which is deduced from a
fit to numerical solution of the Boltzman equation with non-Maxwellian velocity
distribution, is a multiplicative factor of the form

1− 0.553
1 +

(
0.27
α

)0.75 with α = Z
(
vosc
vtherm

)2
. (7.74)

It is also included in Figure 7.11a as a dashed-dotted line that makes the Dawson-
Oberman result a function of vosc/vtherm. However, it does neither explain slope nor
value of any of the observed deviations.

A hint to a probable explanation is given in Figure 7.11b that shows the data from Fig-
ure 7.11a over a rescaled axis. The abscissa is scaled in xosc/dii, i. e. electron quiver am-
plitude over average ion distance, compare Section 1.1 for these parameters. Here, the
unexpected features for both parameter sets appear for the same range 0.1 ≤ xosc/dii ≤ 1.
If xosc/dii > 1, electrons pass by more than one ion during one quiver period on average
and hence suffer from multiple stochastic collisions. In contrast, for xosc/dii < 1, they
oscillate in front of a single ion and are scattered several times at the same center.
Thus, they experience correlated collisions in the picture of Decker et al. [17] where
such an effect was proposed at scales of xosc/λD < 1. In their interpretation, the effect
will lead to enhanced collision frequencies as we observe for Tel = 50.0 eV but could not
be matched to their own simulation data. As we observe a reduced collision frequency
for Tel = 2.0 eV that appears to be contradictory, additional effects have to play a role
here which is perhaps a hint towards a much more complex picture. To further analyze
these features, they first have to be verified by going to lower field amplitudes, where the
Dawson-Oberman result has to be reached in both cases for consistency. However,
as heating rates are low for weak fields, long-running simulations will be necessary that
in addition make use of the good statistics offered by large particle numbers to obtain
reliable results.
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7.5 Summary

Collisions in a plasma lead to a conversion of the collective oscillatory electronic motion
to undirected, random dynamics eventually defining the system’s temperature. In the
present chapter, this connection which is eponymous for the term collisional heating
was utilized to derive the electron-ion collision frequency from simulations of a bulk
hydrogen plasma across two orders of magnitude of the coupling parameter Γ.

For a weakly coupled, i. e. ideal plasma, good coincidence with the theoretically ex-
pected scaling was found. At stronger coupling, we measured significant deviation
from data published on earlier simulations and different theories. Agreement of our
simulations with analytical results by Bornath et al. [101] and Grinenko and Ger-
icke [105] was found in this region. As the primary cause for deviations from and
between the theories and simulations in this comparison, we identified the very differ-
ent treatment of cutoffs for close encounters – classically with a smoothed potential or
quantum mechanically by means of pseudopotentials or with full inclusion of degeneracy
in theory. These findings motivate thorough investigations on the collision frequency’s
strong-correlation limit in future. In particular, its the dependence of the choice of
interaction potential as well as the introduced cutoff parameters is of interest when
it comes to comparing the different approaches for the collision frequency in strongly
correlated Coulomb systems.

Our comparisons on frequency dependence of the collision frequency with analytic ex-
pressions from a quantum statistical approach showed good agreement. Deviations in
the high-frequency limit were expected – again due to the choice of the Kelbg pseu-
dopotential – and were consistently found in our simulations.

In contrast, the scaling of νei with quiver velocity and amplitude, i. e. with laser inten-
sity, revealed unexpected features around 0.1 . vosc/vtherm . 1.0. We found a reduced
collision frequency for the colder and enhanced collision frequency for the hotter system
when comparing to well-established theoretical results. These could not be explained
with modifications of the Maxwellian electron velocity distribution, i. e. the Lang-
don effect, as it was the case in [104]. Accordingly, other effects will have to be consid-
ered. In particular – becoming evident as the electron excursion reaches the inter-ionic
separation – correlated collisions as described by Decker et al. are potential candi-
dates for causing the deviations observed. Again, additional studies in the parameter
region just below vosc/vtherm . 1 are motivated before giving a final evaluation here.
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~ Wie es auch die größte Freude macht, in solchem Zeitpunkt des intensivsten
Aufschwungs der eigenen wissenschaftlichen Disziplin zu leben, wo es eine Über-
fülle von Aufgaben gibt, die sich der Bearbeitung darbieten, [. . . so muß] jeder, der
an dieser Entwicklung auch nur zu einem kleinen Teil helfen will, [. . . ] sich die
ernste Frage vorlegen, an welcher Ecke des Gebäudes er selbst Hand anlegen kann,
falls es nutzbringend zu werden versprechen soll. } [1]

~ As it gives great pleasure to live in such a time of an intense rise of the personal
scientific discipline, where there are a plethora of tasks presenting themselves to be
dealt with, anyone who wants to help in this development only to a small extent [. . . ]
has to seriously ask himself, to which corner of the building he wants to contribute,
if it shall promise to become useful. } [1], translated from the German original.

8.1 Summary

As this thesis opens with a motivating quotation by Paul Drude who contributed
some significant share to the foundation of the theories used here, we also conclude
with his words. Within this thesis, four corners of the contorted scientific building of
plasma physics and its annexmolecular dynamics simulations were actually approached.

We started from a parallel implementation of the Barnes-Hut tree code and extended
it to periodic boundary conditions and scalability for extremely large particle numbers
and hundred thousands of processors. Both developments are not mutually dependent
but complementary. Periodic boundary conditions primarily eliminate boundary and
surface effects which are introduced artificially in simulations due to limited system
size. This is desirable for simulations on properties of bulk matter which are studied in
simulations at small extracts of the full system. In contrast, large particle numbers are
a necessary prerequisite for dealing with large systems that in fact have open bound-
aries also in reality. Here, a virtual expansion of system size by means of periodicity
is not applicable as the boundary effects to be studied would be removed. The imple-
mentation of both features is a milestone in the development of PEPC, our simulation
code. Thanks to its modular concept that also has been developed as by-product of
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this work, not only the strongly-coupled-plasma part of the simulation suite profits from
these advances but all other frontend applications, too.

However, despite interesting developments contributed to the field of numerical algo-
rithms, such a simulation program is only a tool. Its creation and improvement does not
end in itself but is the foundation for dealing with real physical problems and studying
exciting effects in simulations. In this work, we used our highly scalable parallel tree
code for two applications that in fact required the developments made.

First, we studied collective phenomena in the electronic subsystem in confined nanoplas-
mas. Here, we proposed a new diagnostic technique to track resonance phenomena with
spatial resolution. Higher oscillation modes and non-isotropic excitation patterns were
found. Being able to simulate with respect to particle number 300 times larger systems
than in previous studies, we used our code’s potential to bridging from nano to bulk
scale. In this transition we have seen that the bulk properties gradually evolve from the
small clusters’ discrete two-peak spectra via a number of additional resonances towards
the dense spectrum of bulk matter where due to infinite system size and only limited
by crystal structure virtually all oscillation modes are allowed.

Being also interested in optical and transport properties, in the second physical appli-
cation of this thesis we dealt with the collision frequency in bulk matter. In the Drude
model it is the key parameter to experimental observables such as opacity, conductivity,
reflectivity to name but a few. This parameter essentially describes the friction experi-
enced by electrons in matter and thus determines their dynamical behavior. We could
show that our simulations yield results consistent with different theories and are able
to further extend the data basis for collision frequencies in bulk matter. Again, the
good statistics that we observed is due to our ability to study large systems over long
timescales and hence is geared to the algorithm development done before. However,
we also identified an anomalous, hitherto unexplored feature of collisional absorption in
the strongly-coupled, high-field regime, namely enhanced and depleted collision rates.
Furthermore, we identified a strong dependence of νei on the interaction potential and
its parameters.

Thus, coming back to the introductory words, the simulation experiments conducted in
this work did not only contribute to new scientific insight but also posed a number of
new questions to be addressed in future. Accordingly, our simulations are indeed part
of a third scientific corner stone next to theory and experiment. As such, progress is
not to be stopped but research will go on on the application as well as the algorithm
side. Some prospective tracks will be listed in the next and final section of this work.
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8.2 Outlook

With essentially four different topics – two of them algorithm related and two topical
physical applications – this work covers a broad range of specific questions. So will
also do the overview on possible future prospects that we give here in loose order to
conclude this work.

Faster computation with multiple multipoles As seen in Figure 2.2, from the al-
gorithmic point of view the tree code is in a central position between the direct N2

summation and the Fast Multipole Method for evaluating the self-consistent potential
and forces in large sets of particles. Scaling as O(N) in the number of particles N ,
the latter outperforms the classical Barnes-Hut tree code if processed particles per
second are used as a measure. However, with the cell-cell interactions proposed by
Dehnen [198, 202, 203] and his adaptive multipole acceptance criterion, linear scaling
is also reported for a tree code. With inclusion of such an approach, we are expecting
to considerably reduce time-to-solution as less interactions have to be evaluated. As an
intermediate step, we are taking the reuse of interaction lists for nearby particles [204,
205] into account. With these modifications, the tree traversal time will reduce dramat-
ically and other parts of the code could start dominating. These will also have to be
reformulated for hybrid parallelization. In particular, for the parallel tree construction
this will be a challenging task that will finally lead to even better utilization of the
processors available.

Unbounding the boundaries The approach for periodic boundary conditions imple-
mented in this work is based on a spherical harmonics expansion of the Coulomb
potential. This expansion relies on the fact, that such an expansion is possible because
the potential is the Green’s function of the Laplace operator in three dimensions in
spherical coordinates. Accordingly, it is not applicable to the class of generalized alge-
braic kernels introduced in [179] for utilization in the vortex method with our tree code
PEPC. However, we expect that an extension to these potentials based on analytic work
by Cohl [336, 337] on generalization of spherical expansions for these kernels is possi-
ble. This would allow for closed-system vortex fluid simulations that were restricted to
open boundaries in [179] until now.

Furthermore, as it is in general possible to apply the formulation for periodic boundaries
given in Chapter 4 to non-cubic and even triclinic cells, this is not the case for the
indispensable extrinsic to intrinsic correction that in the formulation of Section 4.2.7
is only valid for cubic cells and periodicity in three dimensions. Utilization of the
compensating charge approach by Kudin and Scuseria [259, 260] will mitigate this
issue. Then, the approach can also be applied rigorously for example in simulations

167



8 Wrapping things up: a conclusion

on plasma wall interaction [174, 275] where an elongated simulation cell is periodically
extended in two spatial directions to model the plasma sheath in front of the wall.

De-serializing time Parallel-in-time integration as a very promising approach for mak-
ing even better use of available computer resources and reducing time-to-solution has
been discussed briefly in Section 5.3.4. It will allow for studying very different time
scales such as electronic and ionic motion in consistent simulations without a com-
promise concerning resolution. Such an approach can provide a solution to the most
demanding problem of molecular dynamics when performed on the level of individ-
ual electrons and ions. Due to the mass ratio of mp ≈ 1,836mel, the dynamic’s time
scales vastly differ. Being obstructive in conventional molecular dynamics simulations,
this will even be advantageous for the efficiency of the Parallel-in-time method. Thus,
it could provide a consistent picture of electronic and ionic relaxation from a single
simulation.

Correlation and ionic structure In our simulations on bulk collision frequency, we
used a relaxation step from random particle positions to an organized structure that
corresponds to the required Γ value. For even nonideality parameters, i. e. higher
densities and lower temperatures, crystallization will occur that changes the material’s
properties dramatically. Unfortunately, with low temperatures this process is rather
slow. Studying it in more detail by making use of the extremely good statistics offered
by large particle numbers, possibly accelerated by means of the parallel-in-time method,
will provide information on this phase transition that is not completely understood up
to now. Going towards these higher densities, degeneracy effects will start to dominate.
Up to a certain extent, they can for example be dealt with a path-integral molecular
dynamics approach [129, 338]. In its present formulation, it can be implemented on top
of a classical Coulomb/Kelbg potential based molecular dynamics method such as
PEPC.

Towards experiments With its capability of simulating systems with billions of par-
ticles in a fully kinetic scheme with self-consistent electrostatics, spatial scales as used
in real-world experiments become reachable. Thus, performing simulations with coun-
terparts in laboratory experiment are desirable to make use of PEPC’s predictive ca-
pabilities. In particular, experiments on transport in nano wires or optical features of
nano structures could be the first of such applications. Although we concentrated on
optical properties in this work, these are neither limits of the underlying theory nor
constraints of simulation capabilities. In fact it is in principle also possible to study
transport properties (thermal and electrical conductivity), nonequilibrium and relax-
ation processes, boundary effects, influence of external magnetic fields, etc. using the
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molecular dynamics method. Naturally, fully microscopic ab initio simulations of ex-
periments such as the aluminum example [2] that was mentioned in Chapter 1 are still
far. For example, a technique for dealing with ionization processes will clearly be nec-
essary at such high intensities. However, with today’s computational capabilities and
efficient methods such as the Barnes-Hut tree code and its incarnation PEPC chances
have never been better to connect results from simulations on digital computers to the
analogous world outside.

From collisions back to the observable world As we have seen in Sections 1.4 and 7.4,
there are numerous theories on bulk collision frequency. Proposing values that differ by
almost an order of magnitude in the strong-field regime, an evaluation of their predictive
capabilities is difficult. This is not a result of bad but just of different theories. They
include or omit different mechanisms which all might be relevant in the parameter
space considered. Hence, a direct comparison might be pointless. For example, as
recently shown [85] the collision frequencies from the quantum kinetic approach and
linear response theory actually do not represent the same theoretical object. However,
they can be related to each other either by tracing them to their theoretical origin as
done in [85] or on the level of well-defined physical observables such as the dielectric
function [86].

As stated in Chapter 1, theory, experiment, and simulation are inseparably geared to
each other. Consequently, they should be compared on the same parametric level.
Maybe, the return to experimental observables already known at Drude’s time will
provide the opportunity to for a better unification of these three scientific corner stones
in the field of warm dense matter.
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High-resolution Simulations of Strongly Coupled Coulomb  
Systems with a Parallel Tree Code 

Mathias Winkel

Plasma systems that can be experimentally studied today are reaching from hot, low-density  
plasmas of fusion research to cold dense solids that are dominated by quantum-mechanical  
effects and strong correlations. Their consistent theoretical description requires a multitude  
of effects to be considered. In particular, strong correlations pose significant difficulties here. 
Computer simulations provide a tool for bridging between experiments and theory as they do not 
suffer from these complications.

The experimentally accessible optical and transport properties in plasmas are primarily  
featured by the electronic subsystem, such as its collective behavior and interaction with the ionic  
background, i.e. Coulomb collisions. In this work the collisional behavior of warm dense bulk 
matter and collective effects in nano plasmas are investigated by means of molecular dynamics 
simulations. To this end, simulation experiments performed earlier on electronic resonances  
in metallic nano clusters are extended to significantly larger systems. The observed complex res-
onance structure is analyzed using a newly introduced spatially resolved spectral diagnostic. As a 
second field of study, the bulk collision frequency as the key parameter for optical and transport 
properties in warm dense matter is evaluated in a generalized Drude approach for a hydrogen-like 
plasma. Here, the combined high-field and strong coupling regime that is only scarcely covered 
by theoretical models is of primary interest.

To solve the underlying N-body problem for both applications, a highly parallel Barnes-Hut  
tree code is utilized and considerably extended with respect to functionality, versatility, and scala-
bility. With its new excellent scalability to hundred thousands of processors and simulation setups 
consisting of up to billions of particles and its support for periodic boundary conditions with an 
efficient and precise real-space approach it delivers highly resolved results and is prepared for 
further studies on the warm dense matter regime. Here, its unique predictive capabilities can 
finally be used for connecting to real-world experiments.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part 
of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences 
and the supercomputer facility in one organizational unit. It includes those parts of the scientific 
institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main 
research methodology.
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