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Erik Koch
German Research School for Simulation Science, 52425 Jülich, Germany and
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We use an efficient general hybridization-expansion continuous-time quantum Monte Carlo impurity solver
(Krylov approach) to study orbital and spin ordering phenomena in strongly correlated systems within the
local-density approximation plus dynamical mean-field theory approach. This allows us to include often-neglected
interaction terms, to study models with large basis sets, to consider crystals with low-symmetry distortions, and
to reach the very low experimental temperatures. We use this solver to study ordering phenomena in a selection of
exemplary low-symmetry transition-metal oxides. For the rare-earth manganites, we show that including spin-flip
and pair-hopping terms does not affect the Kugel-Khomskii orbital-order melting transition. For LaMnO3, we
find that the commonly used two-band model with classical t2g spin gives a good description of the eg electrons
when compared with the full five-orbital Hubbard model. Surprisingly not only the occupied orbital but also
the eg spectral matrix is well reproduced. For the d1 perovskites CaVO3 and YTiO3 we show that spin-flip and
pair-hopping terms only weakly affect orbital fluctuations. Moreover, for the Mott insulator YTiO3 we can study
the ferromagnetic polarization to very low temperatures, finding a transition temperature in remarkably good
agreement with experiments.
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I. INTRODUCTION

Orbital and magnetic ordering phenomena play a crucial
role in the physics of strongly correlated transition-metal
oxides. Their onset depends on symmetry, lattice distortions,
superexchange interaction, and the form of the Coulomb ten-
sor. The realistic description of ordering phenomena requires
the ability to disentangle the effects of all these interactions.
In recent years, the local-density approximation plus dynam-
ical mean-field theory (LDA + DMFT) approach,1–3 which
combines ab initio techniques based on density functional
theory in the LDA and DMFT,4 has led to important progress
in understanding such ordering phenomena. It has been
shown that many-body superexchange only weakly affects the
onset of the orbital-order-to-disorder transition in rare-earth
manganites,5 whereas, in the presence of strong Coulomb
repulsion, a small crystal field is sufficient to strongly suppress
orbital fluctuations and stabilize orbital order.5–7 However, the
effects of subtle Coulomb interactions, such as spin-flip and
pair-hopping terms, or of quantum fluctuations, e.g., charge
fluctuations between half-filled t2g and eg states in manganites
or spin fluctuations, are not yet fully understood, while the
origin of very low-temperature magnetism in multiorbital
materials remains little investigated in a realistic context.
The hybridization-expansion continuous-time quantum Monte
Carlo (CT-HYB) technique8–13 appears to date the most
promising DMFT quantum impurity solver to study real mate-
rials at experimental temperatures, although most calculations
so far have been limited to high-symmetry cases or systems

for which the hybridization function is diagonal (or almost
diagonal) in orbital space.8–11,14

In the present work we study the effects of commonly
adopted approximations on the origin of orbital and magnetic
order in some exemplary low-symmetry transition-metal ox-
ides. To do this, we use an efficient general implementation
of the CT-HYB quantum Monte Carlo (QMC) LDA + DMFT
solver for systems of arbitrary point symmetry and arbitrary
local Coulomb interaction. In our implementation we combine
a general Krylov11 scheme, which we use for the low-
symmetry cases, with a very fast segment implementation,8

which can be used when the local Hamiltonian does not mix
flavors (i.e., spin-orbital degrees of freedom). In addition, we
use symmetries10,12 to minimize the computational time. We
present results for the orbital melting transition in the rare-earth
manganites RMnO3, orbital fluctuations in the 3d1 perovskites
CaVO3 and YTiO3, and ferromagnetism in the Mott insulator
YTiO3. Finally, we investigate the regime of validity of the
t2g classical spin approximation often adopted to describe
LaMnO3 and more general manganites.

The paper is organized as follows. In Sec. II we briefly
discuss the approach in the context of the LDA + DMFT
method. Sections III and IV give our results. In Sec. III we
present applications to rare-earth manganites. We show that
spin-flip and pair-hopping terms do not affect the Kugel-
Khomskii orbital-order transition. For LaMnO3 we show that
the eg two-band Hubbard model, commonly used to study the
system, in which the t2g electrons are treated as disordered
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classical spins interacting with the eg spins via the Coulomb
interaction, yields results in very good agreement with the full
five-orbital 3d Hubbard model. Remarkably, the agreement
between the two models is not only excellent for the occupied
state in the orbitally ordered phase, but also very good for
the orbital-resolved eg spectral function matrix. In Sec. IV
we consider vanadates and titanates. We calculate orbital
fluctuations in CaVO3 and YTiO3 and find that the effect
of spin-flip and pair-hopping terms is weak. Moreover, we
calculate the ferromagnetic transition temperature for the
Mott insulator YTiO3 and find excellent agreement with
experiments, showing that orbital order is indeed compatible
with ferromagnetism in this material, contrary to an early
hypothesis.15 Section V gives our conclusions. In the Appendix
we describe the details of our implementation of the general
CT-HYB solver.

II. MODEL AND METHOD

The most general multiband Hubbard model for transition-
metal oxides is given by

H = −
∑
i �=i ′

∑
σ,σ ′

∑
m,m′

t ii
′

mσm′σ ′c
†
imσ ci ′m′σ ′

+
∑

i

∑
σ,σ ′

∑
m,m′

εmσm′σ ′c
†
imσ cim′σ ′

+ 1

2

∑
i

∑
σ,σ ′

∑
mm′m̃m̃′

Umm′m̃m̃′c
†
imσ c

†
im′σ ′cim̃′σ ′cim̃σ . (1)

Here c
†
imσ (cimσ ) creates (annihilates) an electron with spin

σ in orbital m on lattice site i; t ii
′

mσm′σ ′ are the hopping
integrals and εmσm′σ ′ the elements of the crystal-field matrix
obtained from LDA calculations by constructing a localized
Wannier-function basis.6,16 Umm′m̃m̃′ are the screened Coulomb
matrix elements, typically expressed in terms of the three
Slater integrals F0, F2, and F4, with Uav = F0 (direct Coulomb
interaction) and Jav = 1

14 (F2 + F4) (exchange Coulomb inter-
action). In the following we find it more useful to use as
parameters3,17 the diagonal element of the Coulomb matrix,
U0 = F0 + 8

5 J̃ , the Kanamori exchange parameter J̃ = 5
7Jav,

and the Coulomb anisotropy δJ̃ = J̃ ( 1
5 − 1

9
F4
F2

)/(1 + F4
F2

). The

exchange couplings for eg and t2g only are then Jeg
= J̃ + 3δJ̃

and Jt2g
= J̃ + δJ̃ . We solve the model (1) with DMFT using

the CT-HYB QMC approach as a quantum impurity solver.8–10

Our implementation of the CT-HYB QMC solver is discussed
in the Appendix. It works efficiently for systems of arbitrary
space-group symmetry, i.e., with both a hybridization-function
matrix and self-energy matrix in the full spin-orbital space. We
optimize our code for modern massively parallel architectures
and exploit symmetries to minimize the computational time.
We use two approaches to calculate the trace which enters in
the numerical evaluation of the Green’s function: the segment
approach8 and the Krylov method.11 The segment approach
is very fast but can only be used if the local Hamiltonian
does not mix flavors (spin-orbital degrees of freedom). The
Krylov procedure is instead general and scales linearly with the
inverse temperature, becoming therefore particularly efficient
in the low-temperature regime.12,13 Far from phase transitions,

we further enhance the efficiency by adaptively truncating the
local trace in the Green’s function.11,12 Further details on our
code are given in the Appendix. This efficient implementation
allows us to include in the model Hamiltonian (1) typically
neglected interactions, such as spin-flip and pair-hopping terms
or spin-orbit coupling, to study models with larger number of
orbitals (e.g., with the complete five-orbital d shell), and reach
very low temperatures, essential to study magnetic transitions.
In the following, we use our code to systematically compare
different models and test typically adopted approximations on
the orbital and magnetic order of a selection of exemplary
materials.

III. ORBITAL-ORDER MELTING IN RARE-EARTH
MANGANITES

The origin of the orbital-order melting transition18 in
the rare-earth manganites RMnO3 with the t3

2ge
1
g nominal

electronic configuration has long been debated. Recently,5,19

we have shown that for LaMnO3 superexchange alone yields
a large orbital transition temperature TKK ∼ 600 K. This
value is very close to the experimental orbital-order melting
temperature TJT ∼ 750 K. It was already suggested early on
that superexchange effects in LaMnO3 could be so large.20

However, our calculations show in addition that in the RMnO3

series TKK slightly decreases with decreasing ionic radius,
while the experimental TJT dramatically increases. This in-
dicates that the many-body superexchange interaction plays a
small role in determining the orbital-order melting temperature
TJT and the trend of TJT with decreasing radius of the rare-earth
ions. However, spin-flip and pair-hopping terms, neglected in
previous calculations, restore the full degeneracy21–23 of the
eg multiplets and could enhance the strength of superexchange
or even modify the occupied orbital.24 Furthermore, previ-
ous calculations, like most many-body studies of rare-earth
manganites, rely on the classical spins approximation for
t2g orbitals.25 In this approximation the effects of the t2g

spins (St2g
= 3/2) on the eg states is described through a

local magnetic field due to the eg-t2g Coulomb exchange
interaction and a bandwidth renormalization factor arising
from the spatial disorder in the orientation of the t2g spins.
However, charge fluctuations between t2g and eg states or t2g

multiplet fluctuations, not accounted for in such a model, could
affect the orbital order and the occupied orbital. In this section
we use our implementation of the CT-HYB QMC solver to
analyze these effects.

A. Role of spin-flip and pair-hopping interactions

First we analyze the role of spin-flip and pair-hopping
interactions in the orbital melting transition. The minimal
Hubbard Hamiltonian which is believed to retain the essential
physics25 to study this issue is a two-band Hubbard model
for eg states coupled to disordered t2g spins via the Coulomb
interaction, which acts as a local magnetic field h = Jt2g

St2g
.

Thus, in Hamiltonian (1) the one-electron term becomes

εmσm′σ ′ = (
εJTτ i

x + εTτ i
z

)
δσ,σ ′ − hσ i

z ,

t ii
′

mσm′σ ′ = uσ,σ ′ t ii
′

mm′ .
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The index m runs over the eg Wannier orbitals |x2 − y2〉 and
|3z2 − r2〉, σz is the Pauli z matrix, and τx and τz are pseudospin
operators acting on orbital degrees of freedom (τz|3z2 −
r2〉 = 1/2|3z2 − r2〉, τz|x2 − y2〉 = −1/2|x2 − y2〉, τx |3z2 −
r2〉 = |x2 − y2〉). The energies εJT and εT yield, respectively,
the Jahn-Teller and tetragonal crystal-field splitting. Finally
uσ,σ ′ = 2/3 is a band renormalization factor which accounts
for the disorder in the orientations of the t2g spins.25 For
the effective magnetic field h, we present calculations for
the theoretical estimate26 h ∼ 1.35 eV; our results for the
orbital-melting transition and the orbital polarization are,
however, weakly dependent on h in the relevant regime,
in which eg and t2g spins are locally aligned. For the eg

basis, the Coulomb interaction is composed of density-density
interactions, and spin-flip and pair-hopping terms. We use
the theoretical estimates U0 = 5 eV and Jeg

∼ J̃ ∼ 0.76 eV
for the eg screened direct and exchange on-site Coulomb
interaction.5,26,27 In order to calculate the critical temperature
due to superexchange only, we set the crystal-field parameters
to zero: εJT = εT = 0. This disentanglement procedure was
proposed in Ref. 7 and was successfully used to study orbital
order in cuprates and manganites.5,7,19 The transition can be
determined either from the orbital polarization as determined
from the occupations7 of the natural orbitals (order parameter)
or from the energy gain due to orbital polarization.19 The two
approaches give very similar results.19 Here we use the first.

We show in Fig. 1 the results of our calculations based on
our CT-HYB QMC solver; we use the Krylov approach for the
model with spin-flip and pair-hopping terms and the segment
method for the model with density-density Coulomb terms
only. The figure shows the orbital-order transition temperature
due to superexchange only, TKK, for relevant elements of
the series of rare-earth manganites. It demonstrates that the
spin-flip and pair-hopping terms affect very little the overall
trends and even the absolute value of TKK. These results all
reinforce previous conclusions19 that superexchange has a
small influence in determining the orbital-order-to-disorder
transition observed in rare-earth manganites.
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FIG. 1. (Color online) Orbital-order transition temperature due
to superexchange, TKK, versus the R3+ ionic radius in the RMnO3

series (R = Dy, Tb, Nd, La). Open squares: TKK taken from Ref. 19;
calculations were done for density-density Coulomb interactions and
using a Hirsch-Fye QMC solver. Light triangles: CT-QMC (segment
solver) and density-density Coulomb interactions only. Black circles:
CT-QMC (Krylov solver) and full Coulomb interaction.

B. Classical t2g spins versus full five-band model for LaMnO3

Next we test the validity of the classical t2g spin approx-
imation for the orbital-order melting transition. To do this,
we compare the results of the previous section with those
obtained for the full five-band Hubbard model described by
Hamiltonian (1). To study the orbital order due to superex-
change only, we again set to zero the crystal-field splitting
within the eg doublet and t2g triplet; however, we retain
the cubic crystal field which splits t2g and eg . Finally, we
perform the LDA + DMFT calculations at T ∼ 290 K, i.e.,
well below TKK. Since we have already shown that spin flip
and pair hopping do not affect the transition temperature, we
neglect them here to speed up the calculations. Furthermore,
to compare directly the results of the two- and five-band
models, we assume Jeg-t2g

∼ h/St2g
for the eg-t2g exchange

coupling and neglect other small Coulomb anisotropies. The
LDA + DMFT calculation for the five-band model yields
half-filled t2g states and almost fully polarized eg states. The
occupied eg state |θ〉 = cos θ

2 |3z2 − r2〉 − sin θ
2 |x2 − y2〉 is

the orbital with θ ∼ 90o, in excellent agreement with the
results from the classical t2g spins approximation, which
gives basically the same state. The spectral function matrices
calculated for the five- and two-band models are compared in
Fig. 2. This figure shows that not only the orbitals but also,
surprisingly, the overall spectral function matrices from the
two models are in good agreement. Because the five-band
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FIG. 2. (Color online) Top: LaMnO3, comparison of the spectral
function matrix obtained for the five-band Hubbard model and the
eg two-band model with classical t2g spins. Calculations have been
performed at T ∼ 290 K and U0 ∼ 5 eV. The chemical potential μ

is at energy zero for the two-band model and at ∼0.3 eV for the five-
band model. The Jahn-Teller and tetragonal crystal-field splittings are
set to zero. Black line, t2g spectral function; light lines, eg spectral
function from the five-band model; dark lines, eg spectral function
from the two-band model, spin up (solid line) and down (dashed
line). The position of the spin-down Hubbard band depends on the
effective magnetic field h, i.e., on Jt2g

. Bottom: Comparison of the
eg spectral function matrices, orbitally resolved. Solid (dashed) lines:
most (least) occupied orbital. Dark (light) lines: two-band (five-band)
model.

195141-3



FLESCH, GORELOV, KOCH, AND PAVARINI PHYSICAL REVIEW B 87, 195141 (2013)

model includes the full dynamics of the t2g electrons,21 the
effective U0 is larger than for the two-band model. By scanning
different U0 between 7 and 5 eV we find that U0 ∼ 5.5 eV
yields a gap quite close to that of the two-band model and a
spectrum in good agreement with experiments. This shows that
in the two-band model the Coulomb integral U0 is screened
∼10% by the t2g electrons. The half-filled t2g bands exhibit a
very large gap because at half filling the t2g exchange couplings
effectively enhance the effect of the Coulomb repulsion U0.
Finally, we find the on-site spin-spin correlation function to
be 〈Stg

z S
eg

z 〉 ∼ 0.74, very close to the value of 0.75 expected
for aligned eg and St2g

= 3/2 t2g spins. Concerning the sign
problem, we find it negligible for all of these calculations (the
average sign is ∼0.99 in the worst case).

IV. ORBITAL FLUCTUATIONS AND MAGNETISM IN
CaVO3 AND YTiO3

The importance of orbital fluctuations in the physics of
3d1 perovskites has long been debated.6,15,16,28–30 Single-site
DMFT calculations have shown that in the presence of crystal-
field splitting Coulomb repulsion strongly suppresses orbital
fluctuations.6 However, these conclusions were based on a
Hubbard model with density-density Coulomb interactions
only. In this section we analyze the effect of the neglected
spin-flip and pair-hopping Coulomb interactions. Furthermore,
exploiting our efficient CT-HYB solver, we address the issue
of the nature of the low-temperature (30 K)15,31 ferromagnetic
transition in YTiO3.

A. Orbital fluctuations

The minimal model to consider for 3d1 transition-metal
oxides is a three-band Hubbard model for the t2g bands
including spin-flip and pair-hopping terms, and with

εmσm′σ ′ = εmm′δσ,σ ′ ,

t ii
′

mσm′σ ′ = t ii
′

mm′δσ,σ ′ ,

where m,m′ = xy,xz,yz. For the Coulomb parameters we use
U0 = 5 eV and Jt2g

∼ 0.68 eV (CaVO3) or Jt2g
= 0.64 eV

(YTiO3) from theoretical estimates and previous works.6,27

Because the local Hamiltonian mixes flavors even in the
crystal-field basis, i.e., the basis diagonalizing the nonin-
teracting part of the local Hamiltonian, we perform the
LDA + DMFT calculations using the Krylov version of our
general CT-HYB QMC solver.

In Table I we show the occupations ni of the natural orbitals,
i.e., the eigenstates of the one-body density matrix, at ∼190 K
in CaVO3 and YTiO3. We find that CaVO3 is a paramagnetic
metal with a small orbital polarization. Instead, YTiO3 is
a paramagnetic insulator with orbital polarization p = n1 −
(n2 + n3)/2 ∼ 1, i.e., basically full (orbitally ordered state).
For this system, the double occupancies at 290 K are small; i.e.,
we find 1

2

∑
mσ �=m′σ ′ 〈n̂mσ n̂m′σ ′ 〉 ∼ 0.015 for YTiO3. The occu-

pied orbital is |1〉 = 0.611|xy〉 − 0.056|xz〉 + 0.789|yz〉. We
find the occupied state and orbital polarization are basically the
same with full Coulomb and density-density approximations.
Previous calculations6 in which spin-flip and pair-hopping
terms have been neglected and T ∼ 770 K are in line with these
results. This shows that spin-flip and pair-hopping terms do

TABLE I. Occupations ni of the natural orbitals (with ni > ni+1)
at T = 190 K in CaVO3 and YTiO3 obtained by diagonalizing the
occupation matrix. For YTiO3 the occupied orbital is the natural
orbital |1〉 = 0.611|xy〉 − 0.056|xz〉 + 0.789|yz〉, and it basically
coincides with the lowest-energy crystal-field state; we find about
the same occupied orbital by performing the calculation with and
without pair-hopping and spin-flip terms, or in the paramagnetic and
in the ferromagnetic phase.

n1 n2 n3

CaVO3 0.47 0.28 0.25
YTiO3 0.98 0.01 0.01

not change the conclusion that orbital fluctuations are strongly
suppressed in the Mott insulator YTiO3. In the CT-HYB QMC
simulations the average sign is ∼0.9 for YTiO3 and ∼0.95 for
CaVO3.

B. Ferromagnetism in YTiO3

YTiO3 is one of the few ferromagnetic Mott insulators.
Neutron scattering experiments pointed out early-on the diffi-
culties in reconciling ferromagnetism and the expected orbital
order,15 and there have been suggestions that the ferromagnetic
state could rather be associated with a quadrupolar order
and large-scale orbital fluctuations.29 However, second-order
perturbation theory calculations indicate that ferromagnetism
and orbital order could be reconciled, provided that the real
crystal structure of YTiO3, including the GdFeO3-type dis-
tortion (tilting and rotation of the octahedra, and deformation
of the cation cage), is taken into account.16 To clarify this
point, we check the instability towards ferromagnetism of the
three-band t2g Hubbard model obtained for the experimental
structure of YTiO3. With this approach we calculate the
ferromagnetic transition temperature TC due to superexchange
alone in the orbitally ordered phase. Since experimentally
TC ∼ 30 K, we have to perform LDA + DMFT calculations
down to very low temperatures, which becomes possible with
the CT-HYB QMC solver. On lowering the temperature, we
find that the sign problem becomes sizable (average sign ∼0.7
at 40 K). However, we can basically eliminate it (average
sign ∼0.97) by performing the LDA + DMFT calculations

 0
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 20  30  40  50  60  70  80
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 (

T
)

T (K)

FIG. 3. Ferromagnetic spin polarization as a function of temper-
ature in YTiO3. The plot shows a transition at the critical temperature
TC ∼ 50 K, slightly overestimating the experimental value TC ∼
30 K, as one might expect from a mean-field calculations.

195141-4



MULTIPLET EFFECTS IN ORBITAL AND SPIN . . . PHYSICAL REVIEW B 87, 195141 (2013)

in the basis which diagonalize the crystal-field matrix, even
though the hybridization function has off-diagonal terms of
comparable size in the two bases. In Fig. 3 we show the
LDA + DMFT magnetization m(T ) of the t2g states as a
function of the temperature. Remarkably, we find a transition
at about 50 K, in excellent agreement with experiments,32

which yields TC ∼ 30 K; the overestimation can be ascribed
to the mean-field approximation and to the fact that, since the
critical temperature is very small, it is sensitive to tiny details,
in particular the exact value of the screened exchange integral
J . The occupied orbital does not change significantly in the
magnetic phase, indicating that the occupied orbital remains
the one that diagonalizes the crystal-field matrix; i.e., in the
magnetic phase there is no sizable change of orbital5,19 due to
superexchange.

V. CONCLUSIONS

We have implemented an efficient general version of the
continuous-time hybridization-expansion (CT-HYB) quantum
Monte Carlo solver, which allows us to investigate ordering
phenomena in strongly correlated transition-metal oxides
with more realistic model Hamiltonians at experimental low
temperatures. Our implementation of CT-HYB QMC works
for systems of arbitrary symmetry. In cases where symmetry
allows (i.e., if the local Hamiltonian does not mix flavors) we
use the fast segment solver. In more realistic situations we
use the Krylov approach and, away from phase transition,
trace truncation. We find that in all considered cases the
minus-sign problem mostly appears when off-diagonal crystal-
field terms are present. It is strongly suppressed in the basis
of crystal-field states, whereas off-diagonal terms of the
hybridization function matrix are not as critical.33 We show
that spin-flip and pair-hopping terms hardly affect the strength
of the superexchange orbital-order transition temperature in
rare-earth manganites. They also do not change the conclusion
for the d1 perovskites, where orbital fluctuations are strongly
suppressed by the crystal-field splitting in YTiO3. For this Mott
insulator we extended the calculations to very low tempera-
tures, allowing us to observe the transition to ferromagnetism
at a critical temperature TC ∼ 50 K, in excellent agreement
with experiments. This result shows that the predicted orbital
order is fully compatible with ferromagnetism. Finally we test
the classical t2g spin approximation for LaMnO3 by comparing
the results of a two-band model with the eg electron coupled
to classical (disordered) t2g spins with the results for the full
five-band model including all d electrons explicitly. We find
that both approaches give almost the same occupied eg orbital,
while the eg-t2g spin-spin correlation function calculated from
the full d model is ∼0.74, very close to the value expected
for aligned eg and t2g spins, as assumed in the two-band
model. Surprisingly, even the eg spectral matrices resulting
from the two calculations agree well. Finally we find that the
t2g screening included in the five-band model reduces the eg-eg

Coulomb repulsion by about 10%.
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APPENDIX: GENERAL CT-HYB SOLVER

In this Appendix we fix the notation and explain the details
of our implementation of the general CT-HYB quantum-
impurity solver. The DMFT quantum-impurity Hamiltonian
is H = Hloc + Hbth + Hhyb, where

Hloc =
∑
αᾱ

ε̃αᾱc†αcᾱ + 1

2

∑
αα′

∑
ᾱᾱ′

Uαα′ᾱᾱ′c†αc
†
α′cᾱ′cᾱ,

Hbth =
∑

γ

εγ b†γ bγ ,

Hhyb =
∑

γ

∑
α

[Vγ,αc†αbγ + H.c.].

The combined index α = mσ labels spin and orbital degrees
of freedom (flavors). For the bath, we use, without loss of
generality,35 the basis which diagonalizes Hbth, with quantum
numbers γ . Finally, we define ε̃αᾱ = εαᾱ − 
εDC

αᾱ , where εαᾱ

is the crystal-field matrix and 
εDC
αᾱ is the double counting

correction; for the cases considered in the present paper the
latter is a shift of the chemical potential μ.

1. Hybridization-function expansion

By expanding the partition function in powers of
Hhyb and going to the interaction picture Hhyb(τ ) =
eτ (Hbth+Hloc)Hhybe

−τ (Hbth+Hloc) with β = 1/kBT we obtain the
series

Z = Tr
[
e−β(Hbth+Hloc)T e− ∫ β

0 dτHhyb(τ )]
=

∞∑
m=0

(−1)m
∫ (m)

dτ Tr T
[
e−β(Hbth+Hloc)

1∏
i=m

Hhyb(τi)

]
,

where T is the time order operator, τ = (τ1,τ2, . . . ,τm) with
τi+1 � τi and ∫ (m)

dτ ≡
∫ β

0
dτ1 · · ·

∫ β

τm−1

dτm.

In the trace only terms containing an equal number of creation
and annihilation operators in both the bath and impurity
sector, i.e., only even expansion orders m = 2n, contribute.
Introducing the bath partition function Zbth = Tr e−βHbth , the
partition function can be factorized:

Z

Zbth
=

∞∑
n=0

∫ (n)

dτ

∫ (n)

d τ̄
∑
αᾱ

z
(n)
α,ᾱ(τ ,τ̄ ), (2)

with

z
(n)
α,ᾱ(τ ,τ̄ ) = t

(n)
α,ᾱ(τ ,τ̄ ) d

(n)
ᾱ,α(τ ,τ̄ ).

The first factor is the trace over the impurity states

t
(n)
α,ᾱ(τ ,τ̄ ) = Tr T

[
e−β(Hloc−μN)

1∏
i=n

cαi
(τi)c

†
ᾱi

(τ̄i)

]
,

where c(†)
α (τ ) = eτ (Hloc−μN)c(†)

α e−τ (Hloc−μN) and N is the total
number of electrons on the impurity. For expansion order
m = 2n, the vector α = (α1,α2, . . . ,αn) gives the flavors αi

associated with the n annihilation operators on the impurity
at imaginary times τi , while the ᾱ = (ᾱ1,ᾱ2, . . . ,ᾱn) are
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associated with the n creation operators at τ̄i . The second
factor is the trace over the noninteracting bath, which is given
by the determinant

d
(n)
ᾱ,α(τ ,τ̄ ) = det

[
F

(n)
ᾱ,α(τ ,τ̄ )

]
of the n × n square hybridization-function matrix with matrix
elements [F (n)

ᾱ,α(τ ,τ̄ )]i ′,i = Fᾱi′ αi
(τ̄i ′ − τi) given by

Fᾱα(τ ) =
∑

γ

Vγ,ᾱV̄γ,α

1 + e−βεγ
×

{−e−εγ τ τ > 0,

e−εγ (β+τ ) τ < 0.

On the Fermionic Matsubara frequencies, ωn, its Fourier
transform

Fᾱα(ωn) =
∑

γ

Vγ,ᾱV̄γ,α

iωn − εγ

is related to the bath Green’s function matrix G by

Fᾱα(ωn) = iωnδᾱα − ε̃ᾱα − (G)−1
ᾱα (ωn),

as can be shown by downfolding36

(G)−1(ωn) =

⎛
⎜⎜⎜⎝

iωnI0 − H0 V1,0 V2,0 . . .

V̄1,0 iωn − ε1 0 . . .

V̄2,0 0 iωn − ε2 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠

to the impurity block (i = 0). Here the matrix elements of
H0 and I0 are given by (H0)αᾱ = ε̃αᾱ and (I0)αᾱ = δα,ᾱ , while
(V0,i)ᾱi = Vᾱ,i and (V̄i,0)iα = V̄i,α .

To speed up the calculations, we exploit symmetries.
If Nb blocks of flavors are decoupled by symmetries, the
hybridization-function matrix is block diagonal in those
flavors. We then write the partition function in terms of
the expansion orders nb in each block, with n = ∑Nb

b=1 nb,
τ = ∑Nb

b=1 τ b, and α = ∑Nb

b=1 αb. Thus,

Z

Zbth
=

⎡
⎣ Nb∏

b=1

∞∑
nb=0

∫ (nb)

dτ b

∫ (nb)

d τ̄ b

∑
αbᾱb

⎤
⎦ z

(n)
α,ᾱ(τ ,τ̄ )

with

d
(n)
ᾱ,α(τ ,τ̄ ) =

Nb∏
b=1

d
(nb)
ᾱb,αb

(τ b,τ̄ b)

and

t
(n)
α,ᾱ(τ ,τ̄ ) = Tr T

⎡
⎣e−β(Hloc−μN)

Nb∏
b=1

1∏
i=nb

cαbi
(τbi)c

†
ᾱbi

(τ̄bi)

⎤
⎦ .

2. Segment solver and Krylov approach

Calculating the trace over the impurity states involves prop-
agating states in the impurity Hilbert space. For models with
many orbitals this can become very demanding. We therefore
use a multi-approach scheme. When the on-site Hamiltonian
conserves the flavors we use the so-called segment approach,8

which is extremely fast. In such cases only terms with an
equal number of creation and annihilation operators per flavor
contribute to the local trace, and it is convenient to express

the partition function in expansion orders na for flavors a. The
partition function then can be rewritten as

Z

Zbth
=

⎡
⎣ Na∏

a=1

∞∑
na=0

∫ (na )

dτ a

∫ (na )

d τ̄ a

⎤
⎦ z

(n)
α,ᾱ(τ ,τ̄ ).

Here τ = ∑Na

a=1 τ a and τ̄ = ∑Na

a=1 τ̄ a , while the vectors α =∑Na

a=1 αa and ᾱ = ∑Na

a=1 ᾱa have the na components αai =
ᾱai = a. The local trace factors into

t
(n)
α,ᾱ(τ ,τ̄ ) = Tr T

⎡
⎣e−β(Hloc−μN)

Na∏
a=1

1∏
i=na

ca(τai)c
†
a(τ̄ai)

⎤
⎦

=
(

Na∏
a=1

sna

a

)
e− ∑

aa′ [(ε̃aa−μ)δa,a′+ 1
2 ũaa′ ]laa′ ,

where laa′ is the length of the overlap of the τ segments a

and a′, sa = sgn(τa1 − τ̄a1) is the Fermionic sign, and ũaa′ =
Uaa′a′a + Uaa′aa′ is the interaction.

In all the cases in which the local Hamiltonian mixes
flavors, we adopt the Krylov method.11 At the beginning of the
DMFT loop we calculate all the eigenstates of Hloc, {|
n〉},
and their energies {En}; a given state |
n〉 is then propagated
with e−τ1En . The first creation or annihilation operator met
generates a new state |
〉, which we propagate with e−(τ2−τ1)Hloc

obtaining |
(τ2 − τ1)〉, and we repeat the procedure until the
last creation or annihilation operator is met. At the core of
the procedure are the matrix-vector multiplications and the
propagation of vectors. For the first aspect, we work in the
occupation number basis, in which Hloc and the creation
and annihilation operators are sparse matrices. Additionally,
we arrange the states according to the symmetries10,12 of
Hloc, so that we have sparse block-diagonal matrices and can
exploit to the maximum efficient sparse-matrix multiplication
algorithms. We find that this typically reduces the CPU
time by, e.g., about 15% for a three-band model. We use
the Krylov approach to calculate |
(τ )〉 = e−Hlocτ |
〉. First
we construct the Krylov space of order r , Kr (|
〉), i.e.,
the space spanned by |
〉,Hloc|
〉,H 2

loc|
〉, . . . ,H r
loc|
〉. By

means of the Lanczos36 technique we construct an orthonormal
basis for Kr (|
〉), {|k〉}; in this basis Hloc is tridiagonal with
eigenstates {|l〉} and energies {εl}. The matrix exponential
e−Hlocτ is approximated by its projection onto the Krylov space,
e−Hlocτ |
〉 ∼ |
(τ )〉r = ∑r

l=0 e−τεl |l〉〈l|
〉. This procedure
converges very rapidly with r , typically for r much smaller
than the dimension of the Hilbert space,37,38 as illustrated
in Fig. 4. We find that the convergence slightly deteriorates
with increasing τ and the complexity of the Hamiltonian
(realistic Coulomb vertex, crystal-field matrix), but typically
two to three steps are sufficient to obtain accurate results. To
best exploit the power of the method, we keep r flexible.
Furthermore, to avoid that the norm of the state becomes
very large during the propagation, we set E0 to zero, i.e.,
substitute e−τHloc with e−τ (Hloc−E0). In addition, the procedure
(propagation and creation/annihilation) is carried out from
both the left and the right sides of the trace to minimize the
work needed to measure, e.g., the Green’s function matrix.
Finally, at low temperatures or far from phase transitions we
use the eigenvalues of Hloc to determine the relevant energy
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FIG. 4. Convergence of the Krylov approximation |ψ(τ )〉r to
|ψ(τ )〉 = e−(Hloc−E0)τ |ψ〉 for a representative test case (five-orbital
model, half filling). The figure shows the difference 
(r) =
||ψ(τ )〉r − |ψ(τ )〉|. Symbols (in order of increasing size) represent
τ = 0.005, 0.05, 0.5, 5, and 100.

window and truncate adaptively the outer bracket of the trace.
This further reduces the CPU time.

The performance of our CT-HYB QMC solver (Krylov and
segment version) on the Jülich BlueGene/Q, and comparison
with Hirsch-Fye QMC, is shown in Fig. 5.

3. Green’s function and occupation matrix

The partition function (2) can be seen as the sum over all
configurations c = {αiτi,ᾱi τ̄i ,n} in imaginary time and flavors.
In a compact form,

Z =
∑

c

〈Z〉c =
∑

c

wc ∼
∑
{c}

sign(wc),

where in the last term the sum is over a sequence of
configurations {c} sampled by the Monte Carlo approach
using |wc| as the probability of configuration c. In the

 1

 10

 100

20 30 40 50 60 70

Q
M

C
 ti

m
e/

ite
ra

tio
n 

(a
.u

.)

β (eV-1)

HF

K
S

 2  3  5

K-t
K-t

FIG. 5. (Color online) Scaling of our CT-HYB QMC
LDA + DMFT code on BlueGene/Q. Black line: Hirsch-Fye (HF)
solver, two orbitals. The dark and light lines are CT-HYB calculations.
Dark lines: Krylov solver with truncation of the local trace (open
symbols, K-t) and without (solid symbols, K). Results are for two
(circles) and three (triangles) orbitals. Light lines: Segment solver (S),
five-band model (pentagons). All points correspond to calculations
of high quality (and with comparable error bars) for the systems
considered in this work. For β = 70 (∼165 K) the five-orbital segment
solver is about as fast the three-orbital Krylov with trace truncation or
the two-orbital Krylov without trace truncation, and it is remarkably
faster than the two-orbital HF solver.

segment solver approach, we parametrize the configurations
by intervals [0,β) (time line), occupied by a sequence of
creators and annihilators, which define segments on the time
line. The basic Monte Carlo updates are addition and removal
of segments, antisegments, or complete lines.8 In the Krylov
solver approach we use the insertion and removal of pairs
of creation and annihilation operators9,10 as basic updates.
In addition, we shift operators in time8,10 and exchange the
configurations of blocks or flavors39 (global moves). Finally,
a generic observable O can then be obtained as a Monte Carlo
average:

O ∼
∑

{c}〈O〉c sign(wc)∑
{c} sign(wc)

,

where 〈O〉c is the value of the observable for configuration c,
and c runs over the configurations visited with probability |wc|
during the sampling. The average expansion order increases
linearly with the inverse temperature. For the case of YTiO3,
at ∼40 K, the average expansion order is n ∼ 40.

We calculate the Green’s function matrix in two ways,
directly8,12 and via Legendre polynomials.40 In the first
approach, the Green’s function matrix is obtained as a Monte
Carlo average with 〈O〉c = 〈Gαᾱ〉c, and

〈Gαᾱ〉c =
Nb∑
b=1

nb∑
i,j=1


(τ,τbj − τ̄bi)[M
(nb)]bj,biδαbj αδᾱbi ᾱ .

Here M (n) = [F (n)]−1 is the inverse of the hybridization-
function matrix, which we update at each accepted move, while

 is given by


(τ,τ ′) = − 1

β

{
δ(τ − τ ′) τ ′ > 0,

−δ(τ − (τ ′ + β)) τ ′ < 0,

and the δ function is discretized. In the second approach, we
calculate the Legendre coefficients 〈O〉c = 〈Gl

αᾱ〉c, with

〈Gl
αᾱ〉c =

Nb∑
b=1

nb∑
i,j=1

Pl(τbj − τ̄bi)[M
(nb)]bj,biδαbj αδᾱbi ᾱ,

Pl(τ ) = −
√

2l + 1

β

{
pl(x(τ )), τ > 0,

−pl(x(τ + β)), τ < 0,

where pl(x) is a Legendre polynomial of rank l, with x(τ ) =
2τ/β − 1, and we reconstruct the Green’s function matrix from

Gαᾱ(τ ) =
∞∑
l=0

√
2l + 1

β
pl(x(τ ))Gl

αᾱ.

Concerning occupations, in the segment solver we calculate
them from the total length of the segments of the different
flavors;8 in the Krylov solver we obtain them in two ways,
directly from the Green’s function and by explicitly inserting
the occupation number operator at the center of the oper-
ator sequence (τ = β/2) and calculating the corresponding
trace.9,11 The off-diagonal elements of the local occupation
matrix 〈c†αcᾱ〉, which cannot be obtained by inserting the
corresponding operators at τ = β/2,41 are extracted from the
Green’s function matrix only.
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