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Abstract

Results from an ongoing study of baryon-baryon systems with strangeness S = −1 and −2 within chiral effective field theory are

reported. The investigations are based on the scheme proposed by Weinberg which has been applied rather successfully to the

nucleon-nucleon interaction in the past. Results for the hyperon-nucleon and hyperon-hyperon interactions obtained to leading

order are reviewed. Specifically, the issue of extrapolating the binding energy of the H-dibaryon, extracted from recent lattice

QCD simulations, to the physical point is addressed. Furthermore, first results for the hyperon-nucleon interaction at next-to-

leading order are presented and discussed.
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1. Introduction

Chiral effective field theory (EFT) as proposed in the pioneering works of Weinberg [1, 2] is a powerful tool

for the derivation of nuclear forces. In this scheme there is an underlying power counting which allows to improve

calculations systematically by going to higher orders in a perturbative expansion. In addition, it is possible to derive

two- and corresponding three-nucleon forces as well as external current operators in a consistent way. Over the last

decade or so it has been demonstrated that the nucleon-nucleon (NN) interaction can be described to a high precision

within the chiral EFT approach [3, 4]. Following the original suggestion of Weinberg, in these works the power

counting is applied to the NN potential rather than to the reaction amplitude. The latter is then obtained from solving

a regularized Lippmann-Schwinger equation for the derived interaction potential. The NN potential contains pion-

exchanges and a series of contact interactions with an increasing number of derivatives to parameterize the shorter

ranged part of the NN force. For reviews we refer the reader to Refs. [5, 6, 7].

In the present contribution I focus on recent investigations by the groups in Bonn-Jülich and Munich on the baryon-

baryon interaction involving strange baryons, performed within chiral EFT [8, 9, 10, 11, 12]. In these works the same

scheme as applied in Ref. [4] to the NN interaction is adopted. First I discuss the application to the strangeness

S = −1 sector (ΛN, ΣN). Here the extension of our study [8] to next-to-leading order (NLO) is in progress [12] and

a first glimpse on the (still preliminary) achieved results for the ΛN and ΣN interactions will be given. Then I report

results of a study on the strangeness S = −2 sector, i.e. for the ΛΛ, ΣΣ, and cascade-nucleon (ΞN) interactions.

Predictions obtained at leading order (LO) [9] are reviewed and implications for the H-dibaryon are discussed, based

on our framework, in the light of recent lattice QCD calculations where evidence for the existence of such a state was

found.
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At LO in the power counting, as considered in the aforementioned investigations [8, 9, 10], the baryon-baryon

potentials involving strange baryons consist of four-baryon contact terms without derivatives and of one-pseudoscalar-

meson exchanges, analogous to the NN potential of [4]. The potentials are derived using constraints from SU(3) flavor

symmetry. At NLO one gets contributions from two-pseudoscalar-meson exchange diagrams and from four-baryon

contact terms with two derivatives [4].

The paper is structured as follows: In Sect. 2 a short overview of the chiral EFT approach is provided. In Sect. 3

results for the ΛN- and ΣN interactions obtained to NLO are presented. In Sect. 4 results for the the S = −2 (ΛΛ, ΞN

ΣΣ) systems are briefly reviewed and connection is made with lattice QCD results for the H-dibaryon case. The paper

ends with a short Summary.

2. Formalism

The derivation of the chiral baryon-baryon potentials for the strangeness sector at LO using the Weinberg power

counting is outlined in Refs. [8, 10, 14]. Details for the NLO case will be presented in a forthcoming paper [12], see

also [11, 13]. The LO potential consists of four-baryon contact terms without derivatives and of one-pseudoscalar-

meson exchanges while at NLO contact terms with two derivatives arise, together with contributions from (irreducible)

two-pseudoscalar-meson exchanges.

The spin- and momentum structure of the potentials resulting from the contact terms to LO is given by

V
(0)

BB→BB
= CS ; BB→BB + CT ; BB→BB(σ1 · σ2) (1)

in the notation of [4] where the Ci; BB→BB’s are so-called low-energy coefficients (LECs) that need to be determined

by a fit to data. Due to the imposed SU(3)f constraints there are only five independent LECs for the NN and the YN

sectors together, as described in Ref. [8] where also the relations between the various Ci; BB→BB’s are given. A sixth

LEC is, however, present in the strangeness S = −2 channels with isospin I = 0.

In next-to-leading order one gets the following spin- and momentum structure:

V
(2)

BB→BB
= C1q

2
+C2k

2
+ (C3q

2
+C4k

2)(σ1 · σ2) + iC5(σ1 + σ2) · (q × k)

+ C6(q · σ1)(q · σ2) +C7(k · σ1)(k · σ2) + iC8(σ1 − σ2) · (q × k). (2)

The transferred and average momentum, q and k, are defined in terms of the final and initial center-of-mass (c.m.)

momenta of the baryons, p′ and p, as q = p′ − p and k = (p′ + p)/2. The Ci’s (actually Ci; BB→BB’s) are additional

LECs. Performing a partial wave projection and imposing again SU(3)f symmetry one finds that in case of the YN

interaction there are eight new LECs entering the S -waves and S -D transitions, respectively, and ten coefficents in the

P-waves. There are further (four) LECs that contribute only to the S = −2 system.

The spin-space part of the one-pseudoscalar-meson-exchange potential is similar to the static one-pion-exchange

potential (recoil and relativistic corrections give higher order contributions) and follows from the SU(3)f invariant

pseudoscalar-meson–baryon interaction Lagrangian with the appropriate symmetries as discussed in [8]:

VOBE
= − fB1B

′
1
P fB2B

′
2
P

(σ1 · q) (σ2 · q)

q2 + M2
P

. (3)

Here, MP is the mass of the exchanged pseudoscalar meson. The coupling constants fBB′P at the various baryon-

baryon-meson vertices are fixed by the imposed SU(3) constraints and tabulated, e.g., in [8]. They can be expressed in

terms of f ≡ gA/2Fπ ≡ fNNπ (gA = 1.26, Fπ = 92.4 MeV) and α, the so-called F/(F +D)-ratio, for which we adopted

the SU(6) value (α = 0.4). Note that we use the physical masses of the exchanged pseudoscalar mesons. Thus, the

explicit SU(3) breaking reflected in the mass splitting between the pseudoscalar mesons is taken into account. The

η meson was identified with the octet η (η8) and its physical mass was used. The two-pseudoscalar-meson-exchange

potential can be found in Refs. [11, 12].

The reaction amplitudes are obtained from the solution of a coupled-channels Lippmann-Schwinger (LS) equation

for the interaction potentials:

T ν
′′ν′ ,J
ρ′′ρ′ (p′′, p′;

√
s) = Vν

′′ν′ ,J
ρ′′ρ′ (p′′, p′) +

∑

ρ,ν

∫ ∞

0

dpp2

(2π)3
Vν

′′ν,J
ρ′′ρ (p′′, p)

2µν

q2
ν − p2 + iη

T νν
′,J

ρρ′ (p, p′;
√
s) . (4)
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Figure 1. Total cross sections for Λp → Λp, Σ−p → Λn, Σ−p → Σ0n, Σ−p → Σ−p and Σ+p → Σ+p as a function of plab. The green (grey) band

shows the chiral EFT results to LO for variations of the cut-off in the range Λ = 550. . .700 MeV, while the red (black) band are results to NLO for

Λ = 500. . .700 MeV. The dashed curve is the result of the Jülich ’04 [16] meson-exchange potential.

The label ν indicates the particle channels and the label ρ the partial wave. µν is the pertinent reduced mass.

The on-shell momentum in the intermediate state, qν, is defined by
√
s =

√

m2
B1,ν
+ q2
ν +

√

m2
B2,ν
+ q2
ν . Relativistic

kinematics is used for relating the laboratory energy Tlab of the hyperons to the c.m. momentum.

We solve the LS equation in the particle basis, in order to incorporate the correct physical thresholds. Depend-

ing on the specific values of strangeness and charge up to six baryon-baryon channels can couple. For the S = −1

sector where a comparison with scattering data is possible the Coulomb interaction is taken into account appropri-

ately via the Vincent-Phatak method [15]. The potentials in the LS equation are cut off with a regulator function,

exp
[

−
(

p′4 + p4
)

/Λ4
]

, in order to remove high-energy components of the baryon and pseudoscalar meson fields [4].

We consider cut-off values in the range 500, ..., 700 MeV, similar to what was used for chiral NN potentials [4].

3. Results for the strangeness S=-1 sector

The imposed SU(3) flavor symmetry implies that at LO five independent LECs contribute to the YN interaction

[8]. These five contact terms were determined in [8] by a fit to the YN scattering data. Already in that scenario a fairly

reasonable description of the 35 low-energy YN scattering data could be achieved for cutoff values Λ = 550, ..., 700

MeV and for natural values of the LECs. At NLO there are eight new contact terms contributing to the S -waves and

the 3S 1-3D1 transition, and ten in the P-waves. Once again the corresponding LECs were fixed by fitting to the data.

The results obtained at NLO are presented in Fig. 1 (black (red) bands), together with those at LO (grey (green) bands).
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The bands represent the variation of the cross sections based on chiral EFT within the considered cutoff region. For

comparison also results for the Jülich ’04 [16] meson-exchange models are shown (dashed line).

Obviously, and as expected, the energy dependence exhibited by the data can be significantly better reproduced

within our NLO calculation. This concerns in particular the Σ+p channel. But also for Λp the NLO results are now

well in line with the data even up to the ΣN threshold. Furthermore, one can see that the dependence on the cutoff

mass is strongly reduced in the NLO case.

Note that in case of LO as well as at NLO no SU(3)f constraints from the NN sector were imposed in the fitting

procedure. The leading order SU(3)f breaking in the one-boson exchange diagrams (coupling constants) is ignored.

Besides an excellent description of the YN data the chiral EFT interaction also yields a correctly bound hypertriton,

see Table 1. Indeed this binding energy had to be included in the fitting procedure because otherwise it would have

not been possible to fix the relative strength of the (S-wave) singlet- and triplet contributions to the Λp interaction.

Table 1 lists also results for two meson-exchange potentials, namely of the Jülich ’04 model [16] and the Nijmegen

NSC97f potential [17], which both reproduce the hypertriton binding energy correctly. Obviously, the scattering

lengths predicted at NLO are larger than those obtained at LO and now similar to the values of the meson-exchange

potentials. The Σ+p scattering length in the 3S 1 partial wave is positive, as it was already the case for our LO potential,

indicating a repulsive interaction in this channel.

EFT LO EFT NLO Jülich ’04 [16] NSC97f [17] experiment

Λ [MeV] 550 · · · 700 500 · · · 700

a
Λp
s −1.90 · · · −1.91 −2.88 · · · −2.89 −2.56 −2.51 −1.8+2.3

−4.2

a
Λp
t −1.22 · · · −1.23 −1.59 · · · −1.61 −1.66 −1.75 −1.6+1.1

−0.8

a
Σ
+p

s −2.24 · · · −2.36 −3.90 · · · −3.83 −4.71 −4.35

a
Σ
+p

t 0.70 · · · 0.60 0.51 · · · 0.47 0.29 −0.25

(3
Λ

H) EB −2.34 · · · −2.36 −2.31 · · · −2.34 −2.27 −2.30 -2.354(50)

Table 1. The YN singlet (s) and triplet (t) scattering lengths (in fm) and the hypertriton binding energy, EB (in MeV).

Calculations for the four-body hypernuclei 4
Λ

H and 4
Λ

He based on those interactions are reported in Ref. [18].

4. Results for the strangeness S = −2 sector

In this section I review results obtained for the S = −2 sector, specifically for the coupled ΛΛ − ΞN − ΣΣ system,

within chiral EFT at LO [9, 19, 20]. As mentioned above, at LO one additional LEC occurs in this specific channel

with I = 0 which, in principle, should be determined from experimental information available for this sector. However,

the scarce data (Ξ−p → Ξ−p and Ξ−p → ΛΛ cross sections [21]) are afflicted with large uncertainties and, thus, do

not allow to establish reliably its value as found by us [9]. Some results for strangeness S = −2 published in [9] are

reproduced here in Fig. 2. As before the band reflects the dependence of the results on variations of the cutoff Λ.

The cutoff was varied between 550 and 700 MeV (like in case of the LO YN potential) and under the constraint that

the ΛΛ 1S 0 scattering length remains practically unchanged [9]. As reference we have taken the result for Λ = 600

MeV and with the value of the additional LEC fixed in such a way that CΛΛ→ΛΛ = 0. The scattering length turned out

to be aΛΛs = −1.52 fm [9]. Analyses of the measured binding energy of the double-strange hypernucleus 6
ΛΛ

He [22]

suggest that the ΛΛ scattering length could be in the range of −1.3 to −0.7 fm [23, 24, 25]. A first determination of

the scattering length utilizing data on the ΛΛ invariant mass from the reaction 12C(K−,K+ΛΛX) [26] led to the result

aΛΛs = −1.2 ± 0.6 fm [27].

One particular interesting aspect of the coupled ΛΛ−ΞN − ΣΣ system is the H-dibaryon, a deeply bound 6-quark

state with J = 0 predicted by Jaffe from the bag model [28], that should occur in this channel. So far none of the

experimental searches for the H-dibaryon let to convincing signals [26]. However, recently evidence for a bound

H-dibaryon was claimed based on lattice QCD calculations [29, 30, 31, 32]. Extrapolations of those computations,

performed for mπ & 400 MeV, to the physical pion mass suggest that the H-dibaryon could be either loosely bound

or move into the continuum [33, 34].
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Figure 2. YY and ΞN integrated cross sections as a function of plab . The band shows the chiral EFT result at LO for variations of the cutoff Λ as

discussed in the text. Data are from Ref. [21].

Unfortunately, because the mentioned additional contact term cannot be reliably fixed from the data in the S = −2

sector, no immediate predictions can be made for the H-dibaryon within chiral EFT. However, the framework can be

used as a tool to study the dependence of its conjectured binding energy on the masses of the involved hadrons and,

thus, allows for an alternative extrapolation of the results, obtained in lattice QCD calculations at unphysical meson-

and baryon masses, down to the physical point. In particular one can fine-tune the “free” LEC to produce a bound H

with a given binding energy for meson- and baryon masses corresponding to the lattice simulations, and then study

its properties [19, 20] for physical masses. Note that at LO the LECs do not depend on the meson masses (strictly

speaking, on the quark masses). Variations of the meson masses enter only in the potential in Eq. (3), those of the

baryon masses (via µν) in the LS equation (4).

Let me first consider individual variations of the masses of the involved particles. To begin with I examine the

dependence of the H binding energy on the pion mass Mπ and keep all other (meson and baryon) masses at their

physical value. Corresponding results are displayed in Fig. 3 (left). Adjusting the LEC so that a H binding energy of

13.2 MeV is predicted for Mπ = 389 MeV, corresponding to the result published by NPLQCD [31], yields the dashed

curve. The solid curve corresponds to a H-dibaryon that is bound by 1.87 MeV at the physical point, i.e. with the

same binding wave number (0.23161 fm−1) as the deuteron in the NN case. Enlarging the pion mass to around 400

MeV for the latter scenario (i.e. to values in an order that corresponds to the NPLQCD calculation [29]) increases the

binding energy to around 8 MeV and a further change of Mπ to 700 MeV (corresponding roughly to the HAL QCD

calculation [30]) yields then 13 MeV.

Note that the dependence on Mπ obtained agrees – at least on a qualitative level – with that presented in Ref. [33].

Specifically, our calculation exhibits the same trend (a decrease of the binding energy with decreasing pion mass) and

our binding energy of 9 MeV at the physical pion mass is within the error bars of the results given in [33]. On the other

hand, we clearly observe a non-linear dependence of the binding energy on the pion mass. As a consequence, scaling

our results to the binding energy reported by the HAL QCD Collaboration [30] (30-40 MeV for Mπ ≈ 700−1000 MeV)

yields binding energies of more than 20 MeV at the physical point, which is certainly outside of the range suggested in

Ref. [33]. However, it has to be said that for such large pion masses the LO chiral EFT can not be trusted quantitatively.

Now let me look at the dependence of the H binding energy on the masses of the involved baryons. In case

of the H-dibaryon one is dealing with three coupled channels, namely ΛΛ, ΞN, and ΣΣ. Since we know from our

experience with coupled-channel problems [8, 10, 16, 35] that coupling effects are sizeable and the actual separation

of the various thresholds plays a crucial role, we expect a considerable dependence of the H binding energy on the

thresholds (i.e. on the Σ, and on the Ξ and N masses). Corresponding results are displayed in Fig. 3 in the right

panel. Note that the pion mass and the masses of the other pseudo-scalar mesons are kept at their physical value while

varying the BB thresholds. For the isospin-averaged masses used in the actual calculation the thresholds are at 2231.2,

2257.7, and 2385.0 MeV, respectively. Thus, the physical difference between the ΛΛ and ΞN thresholds is around

26 MeV while the ΣΣ threshold is separated from the one for ΛΛ by roughly 154 MeV.

First I discuss the effect of the ΣΣ channel because its threshold is quite far from the one of ΛΛ so that there

is a rather drastic breaking of the SU(3) symmetry. Indeed, when the Σ mass is decreased so that the nominal ΣΣ

threshold (at 2385 MeV) moves downwards and finally coincides with the one of the ΛΛ channel (2231.2 MeV), a

concurrent fairly drastic increase in the H binding energy is observed, cf. the solid curve in Fig. 3 for results based on

5
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Figure 3. Dependence of the binding energy of a H-dibaryon on the pion mass Mπ (left) and on the Σ mass mΣ (right). The solid curve correspond

to the case where the LEC is fixed such that EH = −1.87 MeV for physical masses while for the dashed curve it is fixed to yield EH = −13.2 MeV

for Mπ = 389 MeV. The asterisks and crosses represent results where, besides the variation of mΣ, mΞ + mN = 2mΛ is assumed so that the ΞN
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Figure 4. Phase shifts in the 1S 0 partial wave in the I = 0 channel of ΛΛ (a) and ΞN (b) as a function of the pertinent laboratory energies. The solid

line is the result for our illustrative BB interaction that produces a bound H at EH = −1.87 MeV. The other curves are results for interactions that are

fine-tuned to the H binding energies found in the lattice QCD calculations of the HAL QCD (dashed) and NPLQCD (dash-dotted) Collaborations,

respectively, for the pertinent meson (pion) and baryon masses as described in the text.

the interaction with a binding energy of 1.87 MeV for physical masses of the mesons and baryons. In this context I

want to point out that the direct interaction in the ΣΣ channel is actually repulsive for the low-energy coefficients fixed

from the YN data plus the pseudoscalar meson exchange contributions with coupling constants determined from the

SU(3) relations [8], and it remains repulsive even for LEC values that produce a bound H-dibaryon. But the coupling

between the channels generates a sizeable effective attraction which increases when the channel thresholds come

closer. The dashed curve is a calculation with the contact term fixed to simulate the binding energy (13.2 MeV) of the

NPLQCD Collaboration at Mπ = 389 MeV. As one can see, the dependence of the binding energy on the Σ mass is

rather similar. The curve is simply shifted downwards by around 4.5 MeV, i.e. by the difference in the binding energy

observed already at the physical masses. The asterisks and crosses represent results where, besides the variation of

the ΣΣ threshold, the ΞN threshold is shifted to coincide with that of the ΛΛ channel. This produces an additional

increase of the H binding energy by 20 MeV at the physical ΣΣ threshold and by 9 MeV for that case where all three

BB threshold coincide. Altogether there is an increase in the binding energy of roughly 60 MeV when going from the

physical point to the case of baryons with identical masses, i.e. to the SU(3) symmetric situation. This is significantly

larger than the variations due to the pion mass considered before.

After these exemplary studies let me now try to connect with the published H binding energies from the lattice

QCD calculations [30, 31]. The results obtained by the HAL QCD Collaboration are obviously for the SU(3) sym-

metric case and the corresponding masses are given in Table I of Ref. [30]. Thus, one can take those masses and then
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fix the additional LEC so that their H binding energy is reproduced with those masses. To be concrete: the masses

MP = 673 MeV and mB = 1485 MeV are used, and the LEC is fixed so that EH = −35 MeV. When now the masses

of the baryons and mesons are changed towards their physical values the bound state moves up to the ΛΛ threshold,

crosses the threshold, crosses also the ΞN threshold and then disappears. In fact, qualitatively this outcome can be

already read off from the curves in Fig. 3 by combining the effects from the variations in the pion and the baryon

masses. Based on those results one expects a shift of the H binding energy in the order of 60 to 70 MeV for the mass

parameters of the HAL QCD calculation.

In case of the NPLQCD calculation the values provided in Ref. [36] are taken. Those yield then 17 MeV for

the ΞN-ΛΛ threshold separation (to be compared with the physical value of roughly 26 MeV) and 77 MeV for

the ΣΣ-ΛΛ separation (physical value around 154 MeV). We also use the meson masses of Ref. [36], specifically

Mπ = 389 MeV. With those baryon and meson masses again the LEC is fixed so that the H binding energy given

by the NPLQCD Collaboration is reproduced, namely EH = −13.2 MeV [31]. Again the masses of the baryons and

mesons are changed so that they approach their physical values. Also here the bound state moves up to and crosses the

ΛΛ threshold. However, in the NPLQCD case the state survives and remains below the ΞN threshold at the physical

point. Specifically, an unstable bound state [37] is observed in the ΞN system around 5 MeV below its threshold and

a corresponding resonance at a kinetic energy of 21 MeV in the ΛΛ system

Phase shifts for the ΛΛ and ΞN channels are presented in Fig. 4, for the relevant partial wave (1S 0). The solid line

is the result for the BB interaction that produces a loosely bound H-dibaryon with EH = −1.87 MeV. The phase shift

for the ΞN channel, Fig. 4 (b), is rather similar to the one for the 3S 1 NN partial wave where the deuteron is found,

see e.g. [4]. Specifically, it starts at 180◦, decreases smoothly and eventually approaches zero (for large energies not

shown in the figure). The result for ΛΛ, Fig. 4 (a), behaves rather differently. The pertinent phase commences at

zero degrees, is first negative but becomes positive within 20 MeV and finally turns to zero again for large energies.

This behaviour of the phase shifts was interpreted in [19] as a signature for that the bound H-dibaryon is actually

predominantly a (bound) ΞN state. Indeed, in that work it was argued that it follows already from the assumed

(approximate) SU(3) symmetry of the interaction, that any H-dibaryon is very likely a bound ΞN state rather than a

ΛΛ state.

The dashed curve corresponds to the interaction that was fitted to the result of the HAL QCD Collaboration and

reproduces their bound H-dibaryon with their meson and baryon masses. The results in Fig. 4 are those obtained

with physical masses of the mesons and baryons. The phase shift of the ΞN channel shows no trace of a bound state

anymore. Still the phase shift rises up to around 60◦ near threshold, a behavior quite similar to that of the 1S 0 NN

partial wave where there is a virtual state (also called antibound state [37]). Indeed, such a virtual state also seems to

be present in the ΞN channel as a remnant of the original bound state. The effect of this virtual state can be seen in the

ΛΛ phase shift where it leads to an impressive cusp at the opening of the ΞN channel, cf. the dashed line in Fig. 4 (a).

The ΞN phase shift for the NPLQCD scenario (i.e. for the interaction that reproduces their bound H-dibaryon

with their meson and baryon masses), see the dash-dotted curve, starts at 180◦, a clear indication for the presence

of a bound state. However, in this case the bound state is not located below the ΛΛ threshold but above, as already

mentioned before. Consequently, the corresponding ΛΛ phase shift exhibits a resonance-like behavior at the energy

where the (now quasi) bound H-dibaryon is located.

Phase shifts for the 1S 0 ΣΣ partial wave can be found in Ref. [20]. The predictions of the three considered cases

for this channel are practically the same.

5. Summary

Chiral effective field theory, successfully applied in Ref. [4] to the NN interaction, also works well for the baryon-

baryon interactions in the strangeness S = −1 (ΛN − ΣN) and S = −2 (ΛΛ − ΞN − ΣΣ) sectors. As shown in our

earlier work, already at leading order the bulk properties of the ΛN and ΣN systems can be reasonably well accounted

for. The new results for the YN interaction presented here, obtained to next-to-leading order in the Weinberg counting,

look very promising. First there is a visible improvement in the quantitative reproduction of the available data on ΛN

and ΣN scattering and, secondly, the dependence on the regularization scheme is strongly reduced as compared to the

LO result. Indeed the description of the YN system achieved at NLO is now on the same level of quality as the one

by the most advanced meson-exchange YN interactions.
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The recently reported evidence for the so-called H-dibaryon from lattice QCD calculations stimulated us to in-

vestigate also the quark-mass dependence of binding energies for baryon-baryon systems in the strangeness S = −2

sector within the chiral EFT framework. Here I presented results of an analysis performed at leading order in the

Weinberg counting. We found rather drastic effects caused by the SU(3) breaking related to the values of the three

thresholds ΛΛ, ΣΣ and ΞN. For physical values the binding energy of the H is reduced by as much as 60 MeV as

compared to a calculation based on degenerate (i.e. SU(3) symmetric) BB thresholds. Translating this observation to

the lattice QCD results reported by the HAL QCD Collaboration [30], we see that the bound state has disappeared at

the physical point. For the case of the NPLQCD calculation [31], a resonance in the ΛΛ system might survive.
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