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Abstract

Results from an ongoing study of baryon-baryon systems with strangeness S = —1 and —2 within chiral effective field theory are
reported. The investigations are based on the scheme proposed by Weinberg which has been applied rather successfully to the
nucleon-nucleon interaction in the past. Results for the hyperon-nucleon and hyperon-hyperon interactions obtained to leading
order are reviewed. Specifically, the issue of extrapolating the binding energy of the H-dibaryon, extracted from recent lattice
QCD simulations, to the physical point is addressed. Furthermore, first results for the hyperon-nucleon interaction at next-to-
leading order are presented and discussed.
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1. Introduction

Chiral effective field theory (EFT) as proposed in the pioneering works of Weinberg [1, 2] is a powerful tool
for the derivation of nuclear forces. In this scheme there is an underlying power counting which allows to improve
calculations systematically by going to higher orders in a perturbative expansion. In addition, it is possible to derive
two- and corresponding three-nucleon forces as well as external current operators in a consistent way. Over the last
decade or so it has been demonstrated that the nucleon-nucleon (N N) interaction can be described to a high precision
within the chiral EFT approach [3, 4]. Following the original suggestion of Weinberg, in these works the power
counting is applied to the NN potential rather than to the reaction amplitude. The latter is then obtained from solving
a regularized Lippmann-Schwinger equation for the derived interaction potential. The NN potential contains pion-
exchanges and a series of contact interactions with an increasing number of derivatives to parameterize the shorter
ranged part of the NN force. For reviews we refer the reader to Refs. [5, 6, 7].

In the present contribution I focus on recent investigations by the groups in Bonn-Jiilich and Munich on the baryon-
baryon interaction involving strange baryons, performed within chiral EFT [8, 9, 10, 11, 12]. In these works the same
scheme as applied in Ref. [4] to the NN interaction is adopted. First I discuss the application to the strangeness
S = —1 sector (AN, XN). Here the extension of our study [8] to next-to-leading order (NLO) is in progress [12] and
a first glimpse on the (still preliminary) achieved results for the AN and XN interactions will be given. Then I report
results of a study on the strangeness S = —2 sector, i.e. for the AA, XX, and cascade-nucleon (EN) interactions.
Predictions obtained at leading order (LO) [9] are reviewed and implications for the H-dibaryon are discussed, based
on our framework, in the light of recent lattice QCD calculations where evidence for the existence of such a state was
found.
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At LO in the power counting, as considered in the aforementioned investigations [8, 9, 10], the baryon-baryon
potentials involving strange baryons consist of four-baryon contact terms without derivatives and of one-pseudoscalar-
meson exchanges, analogous to the NN potential of [4]. The potentials are derived using constraints from SU(3) flavor
symmetry. At NLO one gets contributions from two-pseudoscalar-meson exchange diagrams and from four-baryon
contact terms with two derivatives [4].

The paper is structured as follows: In Sect. 2 a short overview of the chiral EFT approach is provided. In Sect. 3
results for the AN- and ZN interactions obtained to NLO are presented. In Sect. 4 results for the the § = -2 (AA, EN
>Y) systems are briefly reviewed and connection is made with lattice QCD results for the H-dibaryon case. The paper
ends with a short Summary.

2. Formalism

The derivation of the chiral baryon-baryon potentials for the strangeness sector at LO using the Weinberg power
counting is outlined in Refs. [8, 10, 14]. Details for the NLO case will be presented in a forthcoming paper [12], see
also [11, 13]. The LO potential consists of four-baryon contact terms without derivatives and of one-pseudoscalar-
meson exchanges while at NLO contact terms with two derivatives arise, together with contributions from (irreducible)
two-pseudoscalar-meson exchanges.

The spin- and momentum structure of the potentials resulting from the contact terms to LO is given by

ssops = Cs:BB—Be+ Cripp—spp(01 - 072) 1)

in the notation of [4] where the C;. pg—,pp’s are so-called low-energy coefficients (LECs) that need to be determined
by a fit to data. Due to the imposed SU(3); constraints there are only five independent LECs for the NN and the YN
sectors together, as described in Ref. [8] where also the relations between the various C;. pp_,pp’s are given. A sixth
LEC is, however, present in the strangeness S = —2 channels with isospin I = 0.

In next-to-leading order one gets the following spin- and momentum structure:

VO s = Cig? + Ok +(C3q° + Cik )0y - 02) +iCs(0r) + 072) - (g X K)
+ Co(q-0o1)(q-02) +Cr(k-o)(k-02) +iCs(0) — 02) - (q X K). 2

The transferred and average momentum, q and Kk, are defined in terms of the final and initial center-of-mass (c.m.)
momenta of the baryons, p’ and p, as q = p’ — p and k = (p’ + p)/2. The C;’s (actually C;. gz pp’s) are additional
LECs. Performing a partial wave projection and imposing again SU(3); symmetry one finds that in case of the YN
interaction there are eight new LECs entering the S -waves and S -D transitions, respectively, and ten coefficents in the
P-waves. There are further (four) LECs that contribute only to the § = -2 system.

The spin-space part of the one-pseudoscalar-meson-exchange potential is similar to the static one-pion-exchange
potential (recoil and relativistic corrections give higher order contributions) and follows from the SU(3); invariant
pseudoscalar-meson—baryon interaction Lagrangian with the appropriate symmetries as discussed in [8]:

OBE  _ (1 -q@)(o2-q)
% = —fB,B;PfBZB;PqZJF—M% .

3)
Here, Mp is the mass of the exchanged pseudoscalar meson. The coupling constants fpp p at the various baryon-
baryon-meson vertices are fixed by the imposed SU(3) constraints and tabulated, e.g., in [8]. They can be expressed in
terms of f = ga/2F, = funr (g4 = 1.26, F, = 92.4 MeV) and «, the so-called F/(F + D)-ratio, for which we adopted
the SU(6) value (@ = 0.4). Note that we use the physical masses of the exchanged pseudoscalar mesons. Thus, the
explicit SU(3) breaking reflected in the mass splitting between the pseudoscalar mesons is taken into account. The
n meson was identified with the octet 77 (173) and its physical mass was used. The two-pseudoscalar-meson-exchange
potential can be found in Refs. [11, 12].

The reaction amplitudes are obtained from the solution of a coupled-channels Lippmann-Schwinger (LS) equation
for the interaction potentials:

dpp? 24, /
V'V I V'V I m VVJ ’” w' . J ’.
T (" ps VS = Vi (p p)+Zf A e MY L D RO



Authorl et al. / Nuclear Physics A 00 (2018) 1-8 3

Ap -> Ap p->An p-> ='n

T T 500 T

EFTLO

® Sechi-Zometal
« Kadyketal

= Alexander et al.
— Jalich 04

EFTLO
400 — NLO B
— Jolich 04

« Engelmann etal

o (mb)

T S vl = | I | | | I | |
700 200 300 400 500 600 700 800 900 o0 120 40 160 180 So0 120 140 160 180

T
Py (MeVic) P (MeVic) Pap (MeVic)

Ip->Xp p->1r'p

\ EFTLO EFTLO
\ — NLO — NLO
20\ — Julich '04 R — Jalich 04

\ © Eiseleetal 2001~ « Eisclootal 7

|
100 120

o T
Piap (MeVic)

o
Piap (MeVic)

Figure 1. Total cross sections for Ap — Ap, 2" p — An, X p — 2%, 2" p — X" p and Z*p — Z*p as a function of p;,,. The green (grey) band
shows the chiral EFT results to LO for variations of the cut-off in the range A = 550...700 MeV, while the red (black) band are results to NLO for
A =500...700 MeV. The dashed curve is the result of the Jiilich *04 [16] meson-exchange potential.

The label v indicates the particle channels and the label p the partial wave. u, is the pertinent reduced mass.
The on-shell momentum in the intermediate state, g,, is defined by /s = \/mém +¢2+ \/mézy + ¢2. Relativistic

kinematics is used for relating the laboratory energy T, of the hyperons to the c.m. momentum.

We solve the LS equation in the particle basis, in order to incorporate the correct physical thresholds. Depend-
ing on the specific values of strangeness and charge up to six baryon-baryon channels can couple. For the § = —1
sector where a comparison with scattering data is possible the Coulomb interaction is taken into account appropri-
ately via the Vincent-Phatak method [15]. The potentials in the LS equation are cut off with a regulator function,
exp [— (p’4 + p4) /A4], in order to remove high-energy components of the baryon and pseudoscalar meson fields [4].
We consider cut-off values in the range 500, ..., 700 MeV, similar to what was used for chiral NN potentials [4].

3. Results for the strangeness S=-1 sector

The imposed SU(3) flavor symmetry implies that at LO five independent LECs contribute to the YN interaction
[8]. These five contact terms were determined in [8] by a fit to the YN scattering data. Already in that scenario a fairly
reasonable description of the 35 low-energy YN scattering data could be achieved for cutoff values A = 550, ...,700
MeV and for natural values of the LECs. At NLO there are eight new contact terms contributing to the S -waves and
the 3S |- D transition, and ten in the P-waves. Once again the corresponding LECs were fixed by fitting to the data.
The results obtained at NLO are presented in Fig. 1 (black (red) bands), together with those at LO (grey (green) bands).
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The bands represent the variation of the cross sections based on chiral EFT within the considered cutoff region. For
comparison also results for the Jiilich 04 [16] meson-exchange models are shown (dashed line).

Obviously, and as expected, the energy dependence exhibited by the data can be significantly better reproduced
within our NLO calculation. This concerns in particular the X* p channel. But also for Ap the NLO results are now
well in line with the data even up to the N threshold. Furthermore, one can see that the dependence on the cutoff
mass is strongly reduced in the NLO case.

Note that in case of LO as well as at NLO no SU(3); constraints from the NN sector were imposed in the fitting
procedure. The leading order SU(3); breaking in the one-boson exchange diagrams (coupling constants) is ignored.

Besides an excellent description of the YN data the chiral EFT interaction also yields a correctly bound hypertriton,
see Table 1. Indeed this binding energy had to be included in the fitting procedure because otherwise it would have
not been possible to fix the relative strength of the (S-wave) singlet- and triplet contributions to the Ap interaction.
Table 1 lists also results for two meson-exchange potentials, namely of the Jiilich 04 model [16] and the Nijmegen
NSC97f potential [17], which both reproduce the hypertriton binding energy correctly. Obviously, the scattering
lengths predicted at NLO are larger than those obtained at LO and now similar to the values of the meson-exchange
potentials. The * p scattering length in the S | partial wave is positive, as it was already the case for our LO potential,
indicating a repulsive interaction in this channel.

EFT LO EFT NLO Jiilich °04 [16] NSCO7f [17] experiment
A [MeV] 550 --- 700 500 - - - 700
as? [ -1.90----1.91 | -2.88 - -2.89 ~2.56 -2.51 ~1.8+23
M| -1.22----1.23 | -1.59 -+ ~1.61 ~1.66 ~1.75 ~1.6*01
ar? | -224----236 | -3.90 - -3.83 -4.71 -4.35
@’ 0.70---0.60 |  0.51---047 0.29 -0.25
| GH Ep | -2.34----236 | -2.31----2.34 | -2.27 -2.30 | -2.354(50) |

Table 1. The YN singlet (s) and triplet (t) scattering lengths (in fm) and the hypertriton binding energy, Ep (in MeV).

Calculations for the four-body hypernuclei j‘\H and j‘\He based on those interactions are reported in Ref. [18].

4. Results for the strangeness S = —2 sector

In this section I review results obtained for the S = —2 sector, specifically for the coupled AA — EN — ZX system,
within chiral EFT at LO [9, 19, 20]. As mentioned above, at LO one additional LEC occurs in this specific channel
with I = 0 which, in principle, should be determined from experimental information available for this sector. However,
the scarce data (" p — E p and E"p — AA cross sections [21]) are afflicted with large uncertainties and, thus, do
not allow to establish reliably its value as found by us [9]. Some results for strangeness S = —2 published in [9] are
reproduced here in Fig. 2. As before the band reflects the dependence of the results on variations of the cutoff A.
The cutoff was varied between 550 and 700 MeV (like in case of the LO YN potential) and under the constraint that
the AA 'S scattering length remains practically unchanged [9]. As reference we have taken the result for A = 600
MeV and with the value of the additional LEC fixed in such a way that Cxp—.aa = 0. The scattering length turned out
to be a® = —1.52 fm [9]. Analyses of the measured binding energy of the double-strange hypernucleus A/6\He [22]
suggest that the AA scattering length could be in the range of —1.3 to —0.7 fm [23, 24, 25]. A first determination of
the scattering length utilizing data on the AA invariant mass from the reaction 2C(K~, K*AAX) [26] led to the result
al = -1.2 0.6 fm [27].

One particular interesting aspect of the coupled AA — EN — XX system is the H-dibaryon, a deeply bound 6-quark
state with J = 0 predicted by Jaffe from the bag model [28], that should occur in this channel. So far none of the
experimental searches for the H-dibaryon let to convincing signals [26]. However, recently evidence for a bound
H-dibaryon was claimed based on lattice QCD calculations [29, 30, 31, 32]. Extrapolations of those computations,
performed for m, = 400 MeV, to the physical pion mass suggest that the H-dibaryon could be either loosely bound

~

or move into the continuum [33, 34].
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Figure 2. Y'Y and EN integrated cross sections as a function of pj,p. The band shows the chiral EFT result at LO for variations of the cutoff A as
discussed in the text. Data are from Ref. [21].

Unfortunately, because the mentioned additional contact term cannot be reliably fixed from the data in the § = -2
sector, no immediate predictions can be made for the H-dibaryon within chiral EFT. However, the framework can be
used as a tool to study the dependence of its conjectured binding energy on the masses of the involved hadrons and,
thus, allows for an alternative extrapolation of the results, obtained in lattice QCD calculations at unphysical meson-
and baryon masses, down to the physical point. In particular one can fine-tune the “free” LEC to produce a bound H
with a given binding energy for meson- and baryon masses corresponding to the lattice simulations, and then study
its properties [19, 20] for physical masses. Note that at LO the LECs do not depend on the meson masses (strictly
speaking, on the quark masses). Variations of the meson masses enter only in the potential in Eq. (3), those of the
baryon masses (via y,) in the LS equation (4).

Let me first consider individual variations of the masses of the involved particles. To begin with I examine the
dependence of the H binding energy on the pion mass M, and keep all other (meson and baryon) masses at their
physical value. Corresponding results are displayed in Fig. 3 (left). Adjusting the LEC so that a H binding energy of
13.2 MeV is predicted for M, = 389 MeV, corresponding to the result published by NPLQCD [31], yields the dashed
curve. The solid curve corresponds to a H-dibaryon that is bound by 1.87 MeV at the physical point, i.e. with the
same binding wave number (0.23161 fm™') as the deuteron in the NN case. Enlarging the pion mass to around 400
MeV for the latter scenario (i.e. to values in an order that corresponds to the NPLQCD calculation [29]) increases the
binding energy to around 8§ MeV and a further change of M, to 700 MeV (corresponding roughly to the HAL QCD
calculation [30]) yields then 13 MeV.

Note that the dependence on M, obtained agrees — at least on a qualitative level — with that presented in Ref. [33].
Specifically, our calculation exhibits the same trend (a decrease of the binding energy with decreasing pion mass) and
our binding energy of 9 MeV at the physical pion mass is within the error bars of the results given in [33]. On the other
hand, we clearly observe a non-linear dependence of the binding energy on the pion mass. As a consequence, scaling
our results to the binding energy reported by the HAL QCD Collaboration [30] (30-40 MeV for M, = 700—1000 MeV)
yields binding energies of more than 20 MeV at the physical point, which is certainly outside of the range suggested in
Ref. [33]. However, it has to be said that for such large pion masses the LO chiral EFT can not be trusted quantitatively.

Now let me look at the dependence of the H binding energy on the masses of the involved baryons. In case
of the H-dibaryon one is dealing with three coupled channels, namely AA, EN, and XX. Since we know from our
experience with coupled-channel problems [8, 10, 16, 35] that coupling effects are sizeable and the actual separation
of the various thresholds plays a crucial role, we expect a considerable dependence of the H binding energy on the
thresholds (i.e. on the X, and on the = and N masses). Corresponding results are displayed in Fig. 3 in the right
panel. Note that the pion mass and the masses of the other pseudo-scalar mesons are kept at their physical value while
varying the BB thresholds. For the isospin-averaged masses used in the actual calculation the thresholds are at 2231.2,
2257.7, and 2385.0 MeV, respectively. Thus, the physical difference between the AA and EN thresholds is around
26 MeV while the XX threshold is separated from the one for AA by roughly 154 MeV.

First I discuss the effect of the X channel because its threshold is quite far from the one of AA so that there
is a rather drastic breaking of the SU(3) symmetry. Indeed, when the X mass is decreased so that the nominal XX
threshold (at 2385 MeV) moves downwards and finally coincides with the one of the AA channel (2231.2 MeV), a
concurrent fairly drastic increase in the H binding energy is observed, cf. the solid curve in Fig. 3 for results based on
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Figure 3. Dependence of the binding energy of a H-dibaryon on the pion mass M (left) and on the X mass my (right). The solid curve correspond
to the case where the LEC is fixed such that Ey = —1.87 MeV for physical masses while for the dashed curve it is fixed to yield Eg = —13.2 MeV
for M, = 389 MeV. The asterisks and crosses represent results where, besides the variation of my, mz + my = 2mp is assumed so that the EN
threshold coincides with that of the AA channel. The vertical (dotted) lines indicate the physical AA and XX thresholds. The circle indicates the
lattice result of the NPLQCD Collaboration [31].
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Figure 4. Phase shifts in the ISo partial wave in the / = 0 channel of AA (a) and ZN (b) as a function of the pertinent laboratory energies. The solid
line is the result for our illustrative BB interaction that produces a bound H at Ey = —1.87 MeV. The other curves are results for interactions that are
fine-tuned to the H binding energies found in the lattice QCD calculations of the HAL QCD (dashed) and NPLQCD (dash-dotted) Collaborations,
respectively, for the pertinent meson (pion) and baryon masses as described in the text.

the interaction with a binding energy of 1.87 MeV for physical masses of the mesons and baryons. In this context I
want to point out that the direct interaction in the XX channel is actually repulsive for the low-energy coefficients fixed
from the YN data plus the pseudoscalar meson exchange contributions with coupling constants determined from the
SU(3) relations [8], and it remains repulsive even for LEC values that produce a bound H-dibaryon. But the coupling
between the channels generates a sizeable effective attraction which increases when the channel thresholds come
closer. The dashed curve is a calculation with the contact term fixed to simulate the binding energy (13.2 MeV) of the
NPLQCD Collaboration at M, = 389 MeV. As one can see, the dependence of the binding energy on the X mass is
rather similar. The curve is simply shifted downwards by around 4.5 MeV, i.e. by the difference in the binding energy
observed already at the physical masses. The asterisks and crosses represent results where, besides the variation of
the 2 threshold, the =N threshold is shifted to coincide with that of the AA channel. This produces an additional
increase of the H binding energy by 20 MeV at the physical XX threshold and by 9 MeV for that case where all three
BB threshold coincide. Altogether there is an increase in the binding energy of roughly 60 MeV when going from the
physical point to the case of baryons with identical masses, i.e. to the SU(3) symmetric situation. This is significantly
larger than the variations due to the pion mass considered before.

After these exemplary studies let me now try to connect with the published H binding energies from the lattice
QCD calculations [30, 31]. The results obtained by the HAL QCD Collaboration are obviously for the SU(3) sym-
metric case and the corresponding masses are given in Table I of Ref. [30]. Thus, one can take those masses and then
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fix the additional LEC so that their H binding energy is reproduced with those masses. To be concrete: the masses
Mp = 673 MeV and mp = 1485 MeV are used, and the LEC is fixed so that Ey = —35 MeV. When now the masses
of the baryons and mesons are changed towards their physical values the bound state moves up to the AA threshold,
crosses the threshold, crosses also the EN threshold and then disappears. In fact, qualitatively this outcome can be
already read off from the curves in Fig. 3 by combining the effects from the variations in the pion and the baryon
masses. Based on those results one expects a shift of the H binding energy in the order of 60 to 70 MeV for the mass
parameters of the HAL QCD calculation.

In case of the NPLQCD calculation the values provided in Ref. [36] are taken. Those yield then 17 MeV for
the EN-AA threshold separation (to be compared with the physical value of roughly 26 MeV) and 77 MeV for
the ZX-AA separation (physical value around 154 MeV). We also use the meson masses of Ref. [36], specifically
M, = 389 MeV. With those baryon and meson masses again the LEC is fixed so that the H binding energy given
by the NPLQCD Collaboration is reproduced, namely Ey = —13.2 MeV [31]. Again the masses of the baryons and
mesons are changed so that they approach their physical values. Also here the bound state moves up to and crosses the
AA threshold. However, in the NPLQCD case the state survives and remains below the ZN threshold at the physical
point. Specifically, an unstable bound state [37] is observed in the EN system around 5 MeV below its threshold and
a corresponding resonance at a kinetic energy of 21 MeV in the AA system

Phase shifts for the AA and EN channels are presented in Fig. 4, for the relevant partial wave ('S). The solid line
is the result for the BB interaction that produces a loosely bound H-dibaryon with Ey = —1.87 MeV. The phase shift
for the ZN channel, Fig. 4 (b), is rather similar to the one for the 3S| NN partial wave where the deuteron is found,
see e.g. [4]. Specifically, it starts at 180°, decreases smoothly and eventually approaches zero (for large energies not
shown in the figure). The result for AA, Fig. 4 (a), behaves rather differently. The pertinent phase commences at
zero degrees, is first negative but becomes positive within 20 MeV and finally turns to zero again for large energies.
This behaviour of the phase shifts was interpreted in [19] as a signature for that the bound H-dibaryon is actually
predominantly a (bound) EN state. Indeed, in that work it was argued that it follows already from the assumed
(approximate) SU(3) symmetry of the interaction, that any H-dibaryon is very likely a bound EN state rather than a
AN state.

The dashed curve corresponds to the interaction that was fitted to the result of the HAL QCD Collaboration and
reproduces their bound H-dibaryon with their meson and baryon masses. The results in Fig. 4 are those obtained
with physical masses of the mesons and baryons. The phase shift of the ZN channel shows no trace of a bound state
anymore. Still the phase shift rises up to around 60° near threshold, a behavior quite similar to that of the 'Sy NN
partial wave where there is a virtual state (also called antibound state [37]). Indeed, such a virtual state also seems to
be present in the EN channel as a remnant of the original bound state. The effect of this virtual state can be seen in the
AA phase shift where it leads to an impressive cusp at the opening of the N channel, cf. the dashed line in Fig. 4 (a).

The EN phase shift for the NPLQCD scenario (i.e. for the interaction that reproduces their bound H-dibaryon
with their meson and baryon masses), see the dash-dotted curve, starts at 180°, a clear indication for the presence
of a bound state. However, in this case the bound state is not located below the AA threshold but above, as already
mentioned before. Consequently, the corresponding AA phase shift exhibits a resonance-like behavior at the energy
where the (now quasi) bound H-dibaryon is located.

Phase shifts for the 'Sy =T partial wave can be found in Ref. [20]. The predictions of the three considered cases
for this channel are practically the same.

5. Summary

Chiral effective field theory, successfully applied in Ref. [4] to the NN interaction, also works well for the baryon-
baryon interactions in the strangeness S = —1 (AN —ZN) and § = -2 (AA — EN — %) sectors. As shown in our
earlier work, already at leading order the bulk properties of the AN and ZN systems can be reasonably well accounted
for. The new results for the YN interaction presented here, obtained to next-to-leading order in the Weinberg counting,
look very promising. First there is a visible improvement in the quantitative reproduction of the available data on AN
and XN scattering and, secondly, the dependence on the regularization scheme is strongly reduced as compared to the
LO result. Indeed the description of the YN system achieved at NLO is now on the same level of quality as the one
by the most advanced meson-exchange YN interactions.
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The recently reported evidence for the so-called H-dibaryon from lattice QCD calculations stimulated us to in-
vestigate also the quark-mass dependence of binding energies for baryon-baryon systems in the strangeness S = -2
sector within the chiral EFT framework. Here I presented results of an analysis performed at leading order in the
Weinberg counting. We found rather drastic effects caused by the SU(3) breaking related to the values of the three
thresholds AA, XX and ZN. For physical values the binding energy of the H is reduced by as much as 60 MeV as
compared to a calculation based on degenerate (i.e. SU(3) symmetric) BB thresholds. Translating this observation to
the lattice QCD results reported by the HAL QCD Collaboration [30], we see that the bound state has disappeared at
the physical point. For the case of the NPLQCD calculation [31], a resonance in the AA system might survive.
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