000139785 001__ 139785 000139785 005__ 20210129212659.0 000139785 0247_ $$2doi$$a10.1515/hsz-2013-0165 000139785 0247_ $$2ISSN$$a1431-6730 000139785 0247_ $$2ISSN$$a1437-4315 000139785 0247_ $$2WOS$$aWOS:000325717100002 000139785 0247_ $$2Handle$$a2128/18376 000139785 0247_ $$2altmetric$$aaltmetric:3121308 000139785 0247_ $$2pmid$$apmid:23787464 000139785 037__ $$aFZJ-2013-05757 000139785 041__ $$aEnglish 000139785 082__ $$a540 000139785 1001_ $$0P:(DE-HGF)0$$aVasudevan, Ananda Ayyappan Jaguva$$b0 000139785 245__ $$aStructural features of antiviral DNA cytidine deaminases 000139785 260__ $$aBerlin [u.a.]$$bde Gruyter$$c2013 000139785 3367_ $$2DRIVER$$aarticle 000139785 3367_ $$2DataCite$$aOutput Types/Journal article 000139785 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1398863252_20150 000139785 3367_ $$2BibTeX$$aARTICLE 000139785 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000139785 3367_ $$00$$2EndNote$$aJournal Article 000139785 500__ $$3POF3_Assignment on 2016-02-29 000139785 500__ $$aBitte POF III Topic noch nachtragen. 000139785 520__ $$aThe APOBEC3 (A3) family of cytidine deaminases plays a vital role for innate defense against retroviruses. Lentiviruses such as HIV-1 evolved the Vif protein that triggers A3 protein degradation. There are seven A3 proteins, A3A-A3H, found in humans. All A3 proteins can deaminate cytidines to uridines in single-stranded DNA (ssDNA), generated during viral reverse transcription. A3 proteins have either one or two cytidine deaminase domains (CD). The CDs coordinate a zinc ion, and their amino acid specificity classifies the A3s into A3Z1, A3Z2, and A3Z3. A3 proteins occur as monomers, dimers, and large oligomeric complexes. Studies on the nature of A3 oligomerization, as well as the mode of interaction of A3s with RNA and ssDNA are partially controversial. High-resolution structures of the catalytic CD2 of A3G and A3F as well as of the single CD proteins A3A and A3C have been published recently. The NMR and X-ray crystal structures show globular proteins with six α-helices and five β sheets arranged in a characteristic motif (α1-β1-β2/2'-α2-β3-α3-β4-α4-β5-α5-α6). However, the detailed arrangement and extension of individual structure elements and their relevance for A3 complex formation and activity remains a matter of debate and will be highlighted in this review. 000139785 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0 000139785 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000139785 7001_ $$0P:(DE-HGF)0$$aSmits, Sander H. J.$$b1 000139785 7001_ $$0P:(DE-HGF)0$$aHöppner, Astrid$$b2 000139785 7001_ $$0P:(DE-HGF)0$$aHäussinger, Dieter$$b3 000139785 7001_ $$0P:(DE-HGF)0$$aMünk, Carsten$$b4$$eCorresponding author 000139785 7001_ $$0P:(DE-Juel1)132009$$aKönig, Bernd$$b5$$ufzj 000139785 773__ $$0PERI:(DE-600)1466062-3$$a10.1515/hsz-2013-0165$$gVol. 394, no. 11$$n11$$p1357 - 1370$$tBiological chemistry$$v394$$x1431-6730$$y2013 000139785 8564_ $$uhttps://juser.fz-juelich.de/record/139785/files/FZJ-2013-05757.pdf$$yOpenAccess 000139785 909__ $$ooai:juser.fz-juelich.de:139785$$pVDB 000139785 909CO $$ooai:juser.fz-juelich.de:139785$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000139785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132009$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000139785 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0 000139785 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0 000139785 9141_ $$y2013 000139785 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000139785 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000139785 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000139785 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000139785 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000139785 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000139785 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000139785 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000139785 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz 000139785 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000139785 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000139785 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000139785 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000139785 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000139785 920__ $$lyes 000139785 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0 000139785 9801_ $$aFullTexts 000139785 980__ $$ajournal 000139785 980__ $$aVDB 000139785 980__ $$aUNRESTRICTED 000139785 980__ $$aI:(DE-Juel1)ICS-6-20110106 000139785 981__ $$aI:(DE-Juel1)IBI-7-20200312