000139814 001__ 139814
000139814 005__ 20240625095029.0
000139814 0247_ $$2arXiv$$aarXiv:1205.1910
000139814 0247_ $$2doi$$a10.1088/1367-2630/15/7/075001
000139814 0247_ $$2WOS$$aWOS:000321293500001
000139814 0247_ $$2Handle$$a2128/5619
000139814 037__ $$aFZJ-2013-05785
000139814 082__ $$a530
000139814 1001_ $$0P:(DE-HGF)0$$aDiVincenzo, David P.$$b0$$eCorresponding author
000139814 245__ $$aMulti-qubit parity measurement in circuit quantum electrodynamics
000139814 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2013
000139814 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s139814
000139814 3367_ $$2DataCite$$aOutput Types/Journal article
000139814 3367_ $$00$$2EndNote$$aJournal Article
000139814 3367_ $$2BibTeX$$aARTICLE
000139814 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000139814 3367_ $$2DRIVER$$aarticle
000139814 500__ $$3POF3_Assignment on 2016-02-29
000139814 500__ $$a17 pages, 4 figures, v2: 21 pages, 5 figures, enlarged discussion of   surface code implementation with 3D techniques
000139814 520__ $$aWe present a concept for performing direct parity measurements on three or more qubits in microwave structures with superconducting resonators coupled to Josephson-junction qubits. We write the quantum-eraser conditions that must be fulfilled for the parity measurements as requirements for the scattering phase shift of our microwave structure. We show that these conditions can be fulfilled with present-day devices. We present one particular scheme, implemented with two-dimensional cavity techniques, in which each qubit should be coupled equally to two different microwave cavities. The magnitudes of the couplings that are needed are in the range that has been achieved in current experiments. A quantum calculation indicates that the measurement is optimal if the scattering signal can be measured with near single photon sensitivity. A comparison with an extension of a related proposal from cavity optics is presented. We present a second scheme, for which a scalable implementation of the four-qubit parities of the surface quantum error correction code can be envisioned. It uses three-dimensional cavity structures, using cavity symmetries to achieve the necessary multiple resonant modes within a single resonant structure.
000139814 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000139814 588__ $$aDataset connected to arXivarXiv
000139814 7001_ $$0P:(DE-HGF)0$$aSolgun, Firat$$b1
000139814 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/15/7/075001$$gVol. 15, no. 7, p. 075001 -$$n7$$p075001$$tNew journal of physics$$v13$$x1367-2630$$y2013
000139814 8564_ $$zPublished final document.
000139814 8564_ $$uhttps://juser.fz-juelich.de/record/139814/files/FZJ-2013-05785_PV.pdf$$yOpenAccess$$zPublished final document.
000139814 909CO $$ooai:juser.fz-juelich.de:139814$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000139814 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000139814 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000139814 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000139814 9141_ $$y2013
000139814 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000139814 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000139814 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000139814 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000139814 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000139814 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000139814 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000139814 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000139814 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000139814 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000139814 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000139814 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000139814 920__ $$lyes
000139814 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000139814 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000139814 980__ $$ajournal
000139814 980__ $$aUNRESTRICTED
000139814 980__ $$aFullTexts
000139814 980__ $$aI:(DE-Juel1)IAS-3-20090406
000139814 980__ $$aI:(DE-Juel1)PGI-2-20110106
000139814 980__ $$aVDB
000139814 9801_ $$aFullTexts
000139814 981__ $$aI:(DE-Juel1)PGI-2-20110106