001     139885
005     20240712084506.0
024 7 _ |a 10.1002/pip.2249
|2 doi
024 7 _ |a 1099-159X
|2 ISSN
024 7 _ |a 1062-7995
|2 ISSN
024 7 _ |a WOS:000327260800013
|2 WOS
037 _ _ |a FZJ-2013-05856
082 _ _ |a 690
100 1 _ |a Ulbrich, Carolin
|0 P:(DE-Juel1)130300
|b 0
|u fzj
|e Corresponding author
245 _ _ |a Analysis of short circuit current gains by an anti-reflective textured cover on silicon thin film solar cells
260 _ _ |a Chichester
|c 2013
|b Wiley
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1386859882_20645
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a The influence of a retro-reflective texture cover on light in-coupling and light-trapping in thin film silicon solar cells is investigated. The texture cover is applied to the front glass of the cell and leads to a reflectance as low as r3% by reducing the reflection at the air/glass interface and indirectly also reducing the reflections from the internal interfaces. For weakly absorbed light in the long wavelength range, the texture also enhances the light-trapping in the solar cell. We demonstrate an increase of the short circuit current density of exemplary investigated thin film silicon tandem solar cells by up to 0.95mAcm2 and of the conversion efficiency by up to 0.74%(absolute). For a planar microcrystalline solar cell, the enhancement of light-trapping was determined from the reduced reflection in the long wavelength range to be up to 17%, leading to an increase of the external quantum efficiency of up to 12%.
536 _ _ |a 111 - Thin Film Photovoltaics (POF2-111)
|0 G:(DE-HGF)POF2-111
|c POF2-111
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Gerber, Andreas
|0 P:(DE-Juel1)130241
|b 1
|u fzj
700 1 _ |a Hermans, Ko
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 3
|u fzj
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 4
|u fzj
773 _ _ |a 10.1002/pip.2249
|g Vol. 21, no. 8, p. 1672 - 1681
|p 1672 - 1681
|n 8
|0 PERI:(DE-600)2023295-0
|t Progress in photovoltaics
|v 21
|y 2013
|x 1062-7995
856 4 _ |u https://juser.fz-juelich.de/record/139885/files/FZJ-2013-05856.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:139885
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130300
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130241
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130263
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)143905
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-129H
|2 G:(DE-HGF)POF3-100
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF2-110
|0 G:(DE-HGF)POF2-111
|2 G:(DE-HGF)POF2-100
|v Thin Film Photovoltaics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21